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Abstract

This is a quick reference guide to the Pure programming language for the impa-
tient. It briefly summarizes all important language constructs and gives a few basic
examples, so that seasoned programmers can pick up the language at a glance and
start hacking away as quickly as possible.
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1 Introduction
Pure is a functional programming language based on term rewriting. Thus your pro-
grams are essentially just collections of symbolic equations which the interpreter uses to
reduce expressions to their simplest (“normal”) form. Term rewriting makes for a sim-
ple but powerful and flexible programming model featuring dynamic typing and gen-
eral polymorphism. In addition, Pure programs are compiled to efficient native code on
the fly, using the LLVM compiler framework, so programs are executed reasonably fast
and interfacing to C is easy.

On the surface, Pure looks similar to modern-style functional languages of the Mi-
randa and Haskell variety, but under the hood it is a much more dynamic language,
with macros and reflective capabilities more akin to Lisp. Pure’s algebraic programming
style probably appeals most to mathematically inclined programmers, but its interactive
programming environment and easy extensibility also make it usable as a (compiled)
scripting language for various application areas, such as graphics, multimedia, scienti-
fic, system and web programming. While languages like Haskell and ML cover much of
the same ground, we think that Pure’s feature set is different enough (and even unique
in some ways) to make it an interesting alternative.

Like all programming languages, Pure also has its weak points. In particular, the
lack of static typing, while appreciated by dynamic language aficionados, also means
less type safety and more execution overhead, so Pure isn’t the best language for large
projects or heavy-duty number crunching. On the other hand it’s a great little language
to get your feet wet with modern functional programming and explore the symbolic ca-
pabilities of term rewriting, and the library support is certainly good enough for practi-
cal programming purposes as well.

1.1 Background and Recommended Reading
It will be helpful if you already have at least a passing familiarity with functional pro-
gramming, see, e.g., [11], or [22] if you’re short on time. A theoretical introduction to
the term rewriting calculus, which Pure is based on, can be found in [1] and [5]; we also
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give a brief summary of the relevant notions in Appendix B. Term rewriting as a pro-
gramming language was pioneered by Michael O’Donnell [18], and languages based on
term rewriting and equational semantics were a fashionable research topic during most
of the 1980s and the beginning of the 1990s, two notable examples being the OBJ family
of languages [8] and OPAL [6].

Pure is most closely related to its predecessor Q [10] and Wouter van Oortmerssen’s
Aardappel [21], although quite obviously it also heavily borrows ideas from other mod-
ern functional languages, in particular Miranda [20], Haskell [13] and Alice ML [17].
Pure’s outfix operators were adopted from William Leler’s Bertrand language [15], while
its matrix support was inspired by MATLAB [16] and GNU Octave [7]. The pattern
matching algorithm, which is the main workhorse behind Pure’s term rewriting ma-
chinery, is described in [9]. To our knowledge, this is still basically the fastest known
general left-to-right term matching technique, although some improvements have been
reported in [19].

Pure also relies on other open source software, most notably the compiler framework
LLVM [14] which Pure uses as its backend for doing JIT compilation, as well as the GNU
Multiprecision Library for its bigint support.

1.2 Getting Started
The Pure interpreter is available at http://purelang.bitbucket.org/. There you can
also find a mailing list and a wiki which has information to help you get up and running
quickly. The documentation can be found online in a collection of manuals called the
Pure Language and Library Documentation, which covers the Pure language and standard
library as well as all the other addon modules and libraries available from the Pure
website. The online documentation can also be read with the help command of the
interpreter.

To run the interpreter, simply type the command ‘pure’ at the shell command line.
The interpreter then prints its sign-on message and leaves you at its ‘> ’ command
prompt, where you can start typing definitions and expressions to be evaluated:

> 17/12+23;
24.4166666666667
> fact n = if n>0 then n*fact (n-1) else 1;
> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

Typing quit or the end-of-file character at the beginning of the command line exits
the interpreter and takes you back to the shell. The interpreter understands a number
of other special interactive commands, see Section 7.2 for a complete list of these. In
particular, we’ll frequently use the show command to print the definitions of defined
functions and variables:

> show fact
fact n = if n>0 then n*fact (n-1) else 1;
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Program examples are set in typewriter font; keywords of the Pure language are in
boldface. These code snippets can either be saved to a file and then loaded into the
interpreter, or you can also just type them directly in the interpreter. If some lines start
with the interpreter prompt ‘> ’, as in the samples above, this indicates an example
interaction with the interpreter. Everything following the prompt is meant to be typed
exactly as written. Lines lacking the ‘> ’ prefix show results printed by the interpreter.

More information about using the interpreter can be found in Section 7, and a few
sample Pure programs have been included for your perusal, see Section 8. The other sec-
tions of this guide describe the important constructs and features of the Pure language.
For reference purposes, the EBNF grammar of the language is listed in Appendix A, and
Appendix B gives a brief account of the term rewriting theory underlying Pure’s model
of computation.

2 Lexical Matters
Pure is a free-format language, i.e., whitespace is insignificant (unless it is used to delimit
other symbols). Thus, in contrast to layout-based languages like Haskell and Python,
you must use the proper delimiters (‘;’) and keywords (end) to terminate definitions and
block structures. This is also true for interactive usage; the interpreter basically accepts
the same input language.

Comments use the same syntax as in C++: // for line-oriented, and /* ... */ for
multiline comments. The latter must not be nested.

Numbers are the usual sequences of decimal digits, optionally followed by a decimal
point and more digits, and/or a scaling factor. In the latter case the sequence denotes
a floating point number, such as 1.23e-45. Simple digit sequences like 1234 denote
integers (32 bit machine integers by default). Using the 0b, 0x and 0 prefixes, these may
also be written in binary (0b1011), hexadecimal (0x12ab) or octal (0177). The L suffix
denotes a bigint (1234L); other integer constants are promoted to bigints automatically
if they fall outside the 32 bit range.

Strings are arbitrary character sequences enclosed in double quotes, such as "abc"
or "Hello, world!\n". Special escape sequences may be used to denote double quotes
and backslashes (\", \\), control characters (\b, \f, \n, \r, \t, these have the same
meaning as in C), and arbitrary Unicode characters given by their number or XML entity
name (e.g., \169, \0xa9 and \&copy; all denote the Unicode copyright character, code
point U+00A9). For disambiguating purposes, numeric escapes can also be enclosed in
parentheses. E.g., "\(123)4" is a string consisting of the character \123 followed by the
digit 4. Also note that Pure doesn’t have a special notation for single characters, these
are just strings of length 1 (counting multibyte characters as a single character), such as
"a" or "\&copy;".

Identifiers consist of letters and digits and start with a letter; as usual, the under-
score ‘_’ counts as a letter here. Case is significant, so foo, Foo and FOO are all distinct
identifiers.
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Operators and constant symbols are special symbols which must be declared before
they can be used, as explained in Section 3.3. Lexically, these can be either ordinary
identifiers (like the and operator in the standard prelude), or arbitrary sequences of
punctuation characters (such as + or ~==). The two kinds of symbols don’t mix, so a
symbol may either contain just letters and digits, or punctuation, but not both at the
same time. In other words, identifiers and punctuation symbols delimit each other, so
that you can write something like x+y without intervening whitespace, which will be
parsed as the three lexemes x + y.

Symbols consisting of punctuation are generally parsed using the “longest possible
lexeme” a.k.a. “maximal munch” rule. Here, the “longest possible lexeme” refers to
the longest prefix of the input such that the sequence of punctuation characters forms
a valid (i.e., declared) operator or constant symbol. Thus x+-y will be parsed as four
tokens x + - y, unless you also declare +- as an operator, in which case the same input
parses as three tokens x +- y instead.

A few ASCII symbols are reserved for special uses, namely the semicolon, the “at”
symbol @, the equals sign =, the backslash \, the Unix pipe symbol |, parentheses (),
brackets [] and curly braces {}. (Among these, only the semicolon is a “hard delim-
iter” which is always a lexeme by itself; the other symbols can be used inside operator
symbols.)

The Pure language also has some keywords which cannot be used as identifiers;
these are listed in Appendix A. In addition, the interactive commands of the Pure inter-
preter, like break, clear, dump, show, etc., are special when typed at the beginning of the
command line, but they can still be used as ordinary identifiers in all other contexts.

Pure fully supports the Unicode character set or, more precisely, UTF-8. This is an
ASCII extension capable of representing all Unicode characters, which provides you
with thousands of characters from most of the languages of the world, as well as an
abundance of special symbols for almost any purpose. If your text editor supports the
UTF-8 encoding (most editors do nowadays), you can use all Unicode characters in
your Pure programs, not only inside strings, but also for denoting identifiers and spe-
cial (operator and constant) symbols. The precise rules by which Pure distinguishes
“punctuation” (which may only occur in declared operator and constant symbols) and
“letters” (identifier constituents) are explained in Appendix A.

3 Expressions
Pure’s expression syntax mostly revolves around the notion of curried function applica-
tions which is ubiquitous in modern functional programming languages. For conve-
nience, Pure also allows you to declare pre-, post-, out- and infix operator symbols, but
these are in fact just syntactic sugar for function applications. Function and operator ap-
plications are used to combine primary expressions to compound terms, also referred
to as simple expressions; these are the data elements which are manipulated by Pure pro-
grams. Besides these, Pure provides some special notations for conditional expressions
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as well as anonymous functions (lambdas) and blocks of local function and variable
definitions. The different kinds of expressions understood by the Pure interpreter are
summarized in the following table, in order of increasing precedence.

Type Examples Description
Block \x y->2*x-y anonymous function (lambda)

case f u of x,y = x+y end pattern-matching conditional
x+y when x,y = f u end local variable definition
f u with f (x,y) = x+y end local function definition

Conditional if x>0 then x else -x conditional expression
Simple x+y, -x, x mod y, not x operator application

sin x, max a b function application
Primary 4711, 4711L, 1.2e-3 number

"Hello, world!\n" string
foo, x, (+) function or variable symbol
[1,2,3], {1,2;3,4}, (1,2,3) list, matrix, tuple
[x,-y | x=1..n; y=1..m; x<y] list comprehension
{i==j | i=1..n; j=1..m} matrix comprehension

3.1 Primary Expressions
Primary expressions are the basic building blocks of expressions. Pure provides the
usual C-like notations for identifiers, integers, floating point numbers and strings (see
Section 2), as well as some special constructs to denote compound primaries (lists, tu-
ples, matrices and records).

• Symbols come in two kinds: Identifiers are the usual sequences of letters (includ-
ing the underscore) and digits, starting with a letter. These are used to denote
functions and variables. Special symbols are used to denote operators and constant
symbols; these may also consist of punctuation and must be declared explicitly
(cf. Section 3.3).

• Integers can be denoted in decimal (1000), hexadecimal (0x3e8), octal (01750) and
binary (0b1111101000). By default, these denote 32 bit signed machine integers.
Bigints (arbitrary precision integers, which are implemented using the GNU Mul-
tiprecision Library) are indicated with the suffix L, e.g., 1000L. Also, large integer
constants exceeding the 32 bit range are promoted to bigints automatically.

• Floating point numbers are always denoted in decimal. To distinguish these from
integers, they must always contain a decimal point and/or a scale factor (power
of 10 exponent), as in 1.2e-3. Internally, these are always stored with double
precision (64 bit).
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• Strings are arbitrary character sequences enclosed in double quotes, such as "abc"
or "Hello, world!\n". These are always encoded in UTF-8 internally.

• Lists are written using brackets, such as [1,2,3]. These are in fact just syntac-
tic sugar for the ‘:’ operator (cf. Section 3.4), thus [1,2,3] is exactly the same
as 1:2:3:[], where [] denotes the empty list. Lists may be nested, and may be
polymorphic (contain elements of different types), such as [1,[2,3],foo 5 6].

• Tuples are a “flat” kind of list data structure which is commonly used to pass sim-
ple aggregate values to functions or return them as results. They are constructed
using the right-associative pair constructor ‘,’ and the empty tuple (), which work
pretty much like ‘:’ and [], but have the following additional properties:

– The empty tuple () acts as a neutral element, i.e., (),x is just x, as is x,().

– Pairs always associate to the right, meaning that x,y,z == x,(y,z) == (x,y),z,
where x,(y,z) is the normalized representation.

Note that this implies that tuples cannot be nested (if you need this then you
should use lists instead). On the other hand, this means that with just the ‘,’ oper-
ator you can do all basic tuple manipulations (prepend and append elements, con-
catenate tuples, and do pattern matching). Tuples thus provide a convenient way
to represent plain sequences which don’t need an elaborate, hierarchical structure.

• Matrices are written using curly braces, using the semicolon to separate different
rows. These work just like in Octave or MATLAB. {1,2,3} denotes a row vector
(1× 3 matrix), {1;2;3} a column vector (3× 1 matrix), and {1,2,3;4,5,6} a 2× 3
matrix. In fact, the {...} construct is rather general, allowing you to construct
new matrices from individual elements and/or submatrices, provided that all di-
mensions match up. E.g., {{1;4},{2;5},{3;6}} is another way to write the 2× 3
matrix {1,2,3;4,5,6} in “column-major” form. Numeric matrices use an internal
representation which is compatible with the GNU Scientific Library; they must be
homogeneous and contain either integer, floating point or complex values only.
Pure also supports symbolic matrices which may contain any mixture of Pure ex-
pressions, such as {1,[2,3],foo 5 6}. The empty matrix is denoted {}; this is by
default a symbolic 0× 0 matrix.

• Records are just symbolic vectors whose members are “hash pairs” of the form
key=>value. Keys may be symbols or strings. For instance, {x=>5,y=>12} denotes
a record value with two fields x and y bound to the values 5 and 12, respectively.
The field values can be any kind of Pure data. In particular, they may themselves
be records, so records can be nested, as in {x=>5,y=>{a=>"foo",b=>12}}. The
prelude provides various operations on records which let you retrieve field values
by indexing and perform non-destructive updates.
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• Comprehensions provide a means to construct lists and matrix values using a vari-
ation of mathematical set notation, by drawing elements from other lists and ma-
trices (generator clauses), possibly restricting the range of collected elements using
predicates (filter clauses). For instance, [2*x|x=xs;x>0] denotes the list of all 2*x
for which x runs through all the positive elements of the list (or matrix) xs. See
Section 3.9 below for details.

3.2 Function Applications
The basic means to form compound expressions in Pure is the function application which,
like in most modern functional languages, is denoted as an invisible infix operation.
Thus, f x denotes the application of a function f to the argument x. Application asso-
ciates to the left, so f x y = ( f x) y. This style of writing function applications is also
known as currying, after the American logician Haskell B. Curry who popularized its
use through his work on the combinatorial calculus.

Currying is much more than just a notational convenience; it’s a way to transform
applications of a function to multiple arguments into a series of single-argument ap-
plications. Specifically, if f is a function taking two arguments x and y, then f x be-
comes a function in its own right, namely the function which maps each given y to
f x y. Currying thus makes it possible to derive new functions from existing ones by
just omitting trailing arguments, which yields a so-called unsaturated or partial applica-
tion. Conversely, an application of a function which supplies all needed parameters and
is thus “ready to go” is called saturated.

Taking the prelude function max as an example, the partial application max 0 thus
denotes a function which returns its argument x if it’s positive, and zero otherwise
(mathematicians also call this the positive part x+ of x). So we may write:

> let f = max 0; f;
max 0
> map f (-3..3);
[0,0,0,0,1,2,3]

Function applications are normally evaluated from left to right in Pure, innermost
expressions first. This is also known as applicative order or call-by-value, since the ar-
guments of a function (as well as the function object itself) are evaluated before the
function is applied. For instance, consider the following function square:

square x = x*x;

Using that definition as well as the built-in rules of arithmetic, the evaluation of the
expression square (4+3)+1 proceeds as follows. In particular, note that the reducible
subterm 4+3 supplied as an argument to square gets evaluated first (such a reducible
expression is also called a redex in term rewriting parlance, and the term it reduces to is
called a reduct).

square (4+3)+1 = square 7+1 = 7*7+1 = 49+1 = 50
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It is often helpful to depict an expression as a binary tree which has the curried
function applications as interior nodes and the functions, constants and variables at the
leaves of the tree. For instance, foo (bar x) y may be depicted as follows (as usual,
we draw the tree like the computer scientists do, i.e., upside-down, with the root of the
tree at the top):

foo
bar x

y

Expressions involving operators can be visualized in the same manner. As we’ll see
in Section 3.3, an infix expression like x+y is really just an application (+) x y of the ‘+’
function, denoted (+). So the expression square (4+3)+1 can be depicted as:

(+)

square
(+) 4

3

1

With this visualization aid, we may consider the evaluation of square (4+3)+1 as
a series of tree transformations, which in each step replaces a subtree, the redex, with
another subtree, the reduct. In the following picture, the redices are denoted in boldface:

(+)

square
(+) 4

3

1

=

(+)
square 7

1

=

(+)
(*) 7

7

1

=
(+) 49

1
= 50

Here we got an atomic value, a number, as the resulting normal form. This isn’t
always the case, however. Sometimes even a saturated function application may not
be evaluated at all, since there is no applicable definition.1 In such cases the applica-
tion itself is returned as a normal form expression, and the applied function becomes a

1In fact, the function operand of an application doesn’t even have to be a “function” in Pure. E.g., it
might be a number, as in 5 2. Such terms are always irreducible in Pure.
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constructor. This is the case, in particular, for the list constructor ‘:’ declared in the pre-
lude. Thus a list like [1,2,3] (which, as we’ve learned, is just a shorthand for 1:2:3:[])
corresponds to the following expression tree:

(:) 1

(:) 2
(:) 3

[]

In this case the constructor symbol ‘:’ is a pure constructor, i.e., there are no defin-
ing equations for ‘:’ at all. But literal applications are also constructed if the applied
function is defined, yet there’s no rule which covers the specific case at hand. By these
means, any function symbol may become part of a normal form expression:

> map (+1) [a,b,c];
[a+1,b+1,c+1]

This is probably one of Pure’s most unusual aspects and may need some getting
used to. But this is just how term rewriting works, and it’s also what makes symbolic
evaluations possible in Pure. Also, as the list example shows, constructor applications
let us represent any kind of hierarchical data structure in an algebraic way. Section 4.3
explains how to define functions operating on such values.

3.3 Operators
For convenience, Pure also lets you introduce special constant and operator symbols
using a so-called fixity declaration. This is nothing but syntactic sugar; internally, an
operator application is actually represented as a curried function application. You can
also turn an operator into an ordinary function symbol by enclosing it in parentheses.
E.g., x+y is in fact exactly the same as (+) x y, just using a somewhat prettier and more
familiar notation.

Fixity declarations take the following forms:

• infix n symbol . . .; infixl n symbol . . .; infixr n symbol . . .;
Declares binary (non-, left- or right-associative) infix operators.

• prefix n symbol . . .; postfix n symbol . . .;
Declares unary (prefix or postfix) operators.

• outfix left-symbol right-symbol . . .;
Declares outfix (bracket) symbols.

• nonfix symbol . . .;
Declares nonfix (constant) symbols.
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The precedence level n of infix, prefix and postfix symbols must be a nonnegative in-
teger (larger numbers indicate higher precedences, 0 is the lowest level).2 Alternatively,
the precedence level can also be given by an existing operator symbol in parentheses.
In either case, the precedence is followed by a whitespace-delimited list of symbols
(identifiers or punctuation). At each level, non-associative operators have the lowest
precedence, followed by left-associative, right-associative, prefix and postfix symbols.

For the infix operators, Pure provides the usual Haskell/Miranda-style operator sec-
tions of the form (x+) (left section) or (+x) (right section) as a shorthand for partial
operator applications. The meaning of these constructs is given by (x+) y = x+y and
(+x) y = y+x. Thus, for instance, (+1) denotes the successor and (1/) the reciprocal
function. (Note, however, that (-x) is always interpreted as an instance of unary minus;
a function which subtracts x from its argument can be written as (+-x).)

In addition to these fairly common kinds of operators, Pure also has outfix and non-
fix symbols. Outfix operators are unary operators taking the form of bracket structures.
These symbols always come in pairs of matching left and right brackets and have high-
est precedence. For instance, the following declaration introduces BEGIN and END as a
pair of matching brackets. Syntactically, these are used like ordinary parentheses, but
actually they are unary operators which can be defined in your program just like any
other operation.

outfix BEGIN END;
BEGIN a,b,c END;

Like the other kinds of operators, you can turn outfix symbols into ordinary func-
tions by enclosing them in parentheses, but you have to specify the symbols in matching
pairs, such as (BEGIN END).

Nonfix symbols are nullary operators, i.e., constant symbols. These work pretty much
like ordinary identifiers, but are always treated as literal constants, even in contexts
where an identifier would otherwise denote a variable (cf. Section 3.5). For instance:

nonfix nil;
null nil = 1;

All the special kinds of symbols discussed above effectively become keywords of the
language and cannot be used as ordinary function or variable identifiers any more. (In
contrast to ordinary keywords, however, they may still be qualified with a namespace
identifier, see Section 5.2. Thus the status of such a symbol actually depends on which
namespaces are in scope at a given point in the program.)

2In theory, the number of precedence levels is unlimited, but for technical reasons the current imple-
mentation actually requires that precedences can be encoded as unsigned 24 bit values. This amounts to
16777216 different levels which should be enough for almost any purpose.

12



3.4 Predefined Operators
The following operators are predefined in the prelude. Note the generous “spacing”
of the precedence levels, which makes it easy to sneak in additional operator symbols
between existing levels if you have to.

infixl 1000 $$ ; // sequence operator
infixr 1100 $ ; // right-associative application
infixr 1200 , ; // pair (tuple)
infix 1300 => ; // key=>value pairs ("hash rocket")
infix 1400 .. ; // arithmetic sequences
infixr 1500 || ; // logical or (short-circuit)
infixr 1600 && ; // logical and (short-circuit)
prefix 1700 ~ ; // logical negation
infix 1800 < > <= >= == ~= ; // relations
infix 1800 === ~== ; // syntactic equality
infixr 1900 : ; // list cons
infix 2000 +: <: ; // complex numbers (cf. math.pure)
infixl 2100 << >> ; // bit shifts
infixl 2200 + - or ; // addition, bitwise or
infixl 2300 * / div mod and ; // multiplication, bitwise and
infixl 2300 % ; // exact division (cf. math.pure)
prefix 2400 not ; // bitwise not
infixr 2500 ^ ; // exponentiation
prefix 2600 # ; // size operator
infixl 2700 ! !! ; // indexing, slicing
infixr 2800 . ; // function composition
prefix 2900 ’ ; // quote
postfix 3000 & ; // thunk

Here is a brief description of the basic arithmetic and logical operations:

• -x, x+y, x-y, x*y, x/y: These are the usual arithmetic operations which work on all
kinds of numbers. Unary minus always has the same precedence as binary minus
in Pure. ‘/’ is Pure’s inexact division operation which always yields double results.
The ‘+’ operator also denotes concatenation of strings and lists.

• x div y, x mod y: Integer division and modulus. These work with both machine
ints and bigints in Pure.

• x%y: Pure’s exact division operator. This produces rational numbers and requires
the math module to work. (If the math module is not loaded then ‘%’ acts as a
simple constructor symbol.)

• x^y: Exponentiation. Like ‘/’, this always yields double results. (The prelude also
provides the pow function to compute exact powers of ints and bigints.)
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• x<y, x>y, x<=y, x>=y, x==y, x~=y: Comparison operators. x~=y denotes inequality.
These work as usual on numbers and strings, equality is also defined on lists and
tuples. The result is 1 (true) if the comparison holds and 0 (false) if it doesn’t
(false and true are defined as integer constants in the prelude).

• x===y, x~==y: Syntactic equality. These work on all Pure expressions. x===y yields
true iff x and y are syntactically equal, i.e., print out the same in the interpreter.

• ~x, x&&y, x||y: Logical operations. These take arbitrary machine integers as argu-
ments (zero denotes false, nonzero true) and are implemented using short-circuit
evaluation (e.g., 0&&y always yields 0, without ever evaluating y). Note that logi-
cal negation is denoted as ‘~’ rather than with C’s ‘!’ (which denotes indexing in
Pure, see below).

• not x, x and y, x or y: Bitwise logical operations. These are like ‘~’, ‘&’ and ‘|’ in
C, but they also work with bigints in Pure.

• x<<y, x>>y: Bit shift operations. Like the corresponding C operators, but they also
work with bigints in Pure.

Most of the remaining operators defined in the prelude are either function combina-
tors, specialized data constructors or operations to deal with lists and other aggregate
structures:

• x:y: This is the list-consing operation. x becomes the head of the list, y its tail. This
is a constructor symbol, and hence can be used on the left-hand side of a definition
for pattern-matching.

• x..y: Constructs arithmetic sequences. E.g., 1..5 evaluates to [1,2,3,4,5]. x:y..z
can be used to denote sequences with arbitrary stepsize y-x.3 Infinite sequences
can be constructed using an infinite bound (i.e., inf or -inf). E.g., 1:3..inf de-
notes the (lazy) list of all positive odd integers.

• x,y: This is the pair constructor, used to create tuples of arbitrary sizes. Tuples
provide an alternative way to represent simple aggregate values in Pure. As al-
ready mentioned, the pair constructor is associative in Pure, so that, in contrast to
lists, tuples are always “flat”. More precisely, (x,y),z always reduces to x,(y,z)
which is the canonical representation of the triple x,y,z.

• #x: The size (number of elements) of the string, list, tuple or matrix x. (In addition,
dim x yields the dimensions, i.e., the number of rows and columns of a matrix.)

3Note that in order to prevent unwanted artifacts due to rounding errors, the upper bound in a floating
point sequence is always rounded to the nearest grid point. Thus, e.g., 0.0:0.1..0.29 actually yields
[0.0,0.1,0.2,0.3], as does 0.0:0.1..0.31.
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• x!y: The indexing operation. This somewhat peculiar notation seems to have its
origins in the BCPL language. (Pure inherited it from Q which in turn adopted
it from the original edition of the Bird/Wadler book [3].) The prelude defines
indexing of strings, lists, tuples and matrices. Note that all indices in Pure are zero-
based, thus x!0 and x!(#x-1) denote the first and the last element, respectively. In
the case of matrices, the subscript may also be a pair of row and column indices,
such as x!(1,2).

• x!!ys: Pure also provides slicing of all indexed data structures. This operation re-
turns the subsequence (string, list, tuple or matrix) of all x!y while y runs through
the elements of the index collection ys (this can be either a list or matrix). In the
case of matrices the index range may also contain two-dimensional subscripts, or
the index range itself may be specified as a pair of row/column index lists such as
x!!(i..j,k..l).

• x.y: This is the function composition operator, as defined by (f.g) x = f(g x),
which is useful if you have to apply a chain of functions to some value. For in-
stance, max x.min y is a quick way to denote a function which “clamps” its argu-
ment between the bounds x and y.

• x$y: The explicit function application operator. You can use this, e.g., if you need
to apply a list of functions to corresponding values in a second list as follows:
zipwith ($) [f,g,h] [x,y,z]. Also note that, since the $ operator has low pri-
ority and is right-associative, it provides a convenient means to write “cascading”
function calls like foo x $ bar $ y+1 which is the same as foo x (bar (y+1)).

• x+:y, x<:y, x=>y: These are all specialized data constructors. +: and <: are used to
represent complex numbers in rectangular and polar notation, respectively. Like
%, these require the math module to work (they will act as simple constructors
without defining equations if the math module is not loaded). The “hash rocket”
=> is a plain constructor symbol which is used to denote key-value associations.

• x$$y, x&, ’x: These operators are special forms, cf. Section 3.10. x$$y is used to
execute expressions in sequence, x& creates “thunks” a.k.a. “futures” which are
evaluated lazily, and ’x (or, equivalently, quote x) defers the evaluation of an
expression.

3.5 Patterns
Patterns are pervasive in Pure. They form the left-hand sides of rules in all function
definitions and variable-binding constructs to be discussed in Sections 3.7 and 4. Pat-
terns are expressions which serve as templates to be matched against a subject term. If
the subject matches the literal parts of a pattern, variables in the pattern are bound to
the corresponding values in the subject.
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In the simplest case, a pattern may just be a lone variable, but in the general case
it can be any (simple) expression. In Pure, a variable is any identifier at the “leaves”
(atomic subexpressions) of the pattern, subject to the following constraints:

• Head = function (read: “head is function”) rule: Identifiers in the head position of
a function application always denote literal function symbols.

• Nonfix symbols (cf. Section 3.3) are always interpreted as literals and can never be
variables.

Pure is a terse language. The “head = function” rule is simply a convention which
lets us get away without declaring the variables or imposing some special (usually awk-
ward) lexical syntax. Constant symbols need to be declared as nonfix, since otherwise
they couldn’t be distinguished from variables; but these are quite rare, at least compared
to variables in patterns which are a dime a dozen.

To explain the “head = function” rule, let’s consider the pattern foo (bar x) (y:ys)
as an example. You can see at a glance (at least with some practice) that foo and bar
as well as the list constructor (:) are the function symbols, whereas x, y and ys are the
variables. Note that (:) is indeed the head symbol of the application y:ys here, because
in curried application syntax this expression is written as (:) y ys. To better see this,
let’s depict the expression as a binary tree, in the same way as in Section 3.2:

foo
bar x (:) y

ys

The variables have been marked with italics here; they are the leaves dangling from
the right branches of the tree (also called the variable positions), while the function sym-
bols in non-variable or head positions can all be found at the left branches. Note that only
identifiers at variable positions can be variables; constants like numbers will of course al-
ways be interpreted as literals, no matter where they are located in the expression tree.
The same is true for nonfix symbols, which are always interpreted as literal constants,
as far as pattern-matching is concerned.

The variable _ is special in patterns. It denotes the anonymous variable, which matches
an arbitrary value (independently for all occurrences) and does not bind a variable
value. For instance, _:1:_ matches any list with the integer 1 in the second element.
Also note that the anonymous variable is exempt from the “head = function” rule, so it
is always interpreted as a variable, even if it occurs in the head position of a function
application.

Patterns may be non-linear in Pure, i.e., they may contain multiple occurrences of
a variable. All occurrences of the same variable (other than the anonymous variable)
must then be matched to the same value. For instance, here is how you can define a
function uniq which removes adjacent duplicates from a list:
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uniq (x:x:xs) = uniq (x:xs);
uniq (x:xs) = x:uniq xs;
uniq [] = [];

The notion of “sameness” employed here is that of syntactic equality, i.e., it is checked
that the corresponding subterms have the same structure and content. (Pure clearly
distinguishes this from the semantic equality predicate embodied by the ‘==’ and ‘~=’
operators which can be defined freely by the programmer.) Syntactic equality is also
available as an explicit operation same as well as corresponding operators ‘===’ and
‘~==’ in the prelude, so that the first rule above is roughly equivalent to:

uniq (x:y:xs) = uniq (x:xs) if x === y;

Syntactically, patterns are just simple expressions, but they may also contain the
following special elements which are not permitted in ordinary expressions:

• “As” pattern: This is a pattern of the form variable@pattern which, in addition to the
given variable, also matches the given subpattern and binds the variables in the
subpattern accordingly. Syntactically, “as” patterns are primary expressions; if the
subpattern is not a primary expression, it must be parenthesized. For instance,
xs@(x:_) matches a non-empty list and binds the variable xs to the entire list and
the variable x to its head element.

• Type tags: A variable can be followed by the :: symbol and a type symbol, to indi-
cate that it can only match a value of the corresponding type. There are a few built-
in types, namely int, bigint, double, string, matrix and pointer, which denote
the corresponding primitive types built into the language. Some other types are
defined in the prelude, and additional types can be defined by the programmer as
needed.

“As” patterns place variables at the interior (non-leaf) nodes of an expression tree.
E.g., foo (ys@(x:xs)) may be depicted as:

foo ys

(:) x
xs

Note that the “as” pattern x@_ matches any value anywhere and binds the variable
x to it. This works just like x itself, except in non-variable (i.e., head) positions where
a lone x would be interpreted as a literal. Thus a pattern like x@_ y provides a means
to “escape” a variable in the head position of a function application. This is handy if
you need to define functions operating on function applications in a generic way. For
instance, the following little example illustrates how you can collect the function and
arguments of an application in a list:
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> appl x = a [] x with a xs (x@_ y) = a (y:xs) x; a xs x = x:xs end;
> appl (f x y z);
[f,x,y,z]

Type tags are a kind of additional “guards” on a definition, which restrict the set of
terms that can be matched by the corresponding variable. Except for the built-in types,
they must be introduced by means of a type definition. The format of these definitions
is explained in Section 4.6. For the sake of a simple example, let us consider points
in the plane which might be represented using a constructor symbol Point which gets
applied to pairs of coordinates. We also equip this data type with an operation point to
construct a point from its coordinates, and two operations xcoord and ycoord to retrieve
the coordinates:

type point (Point x y);
point x y = Point x y;
xcoord (Point x y) = x;
ycoord (Point x y) = y;

Now we might define a function translate which shifts the coordinates of a point
by a given amount in the x and y directions as follows:

translate (x,y) p::point = point (xcoord p+x) (ycoord p+y);

Note the use of point as a type tag on the p variable. By these means, we can en-
sure that the argument is actually an instance of the point data type, without assuming
anything about the internal representation. We can use these definitions as follows:

> let p::point = point 3 3;
> p; translate (1,2) p;
Point 3 3
Point 4 5

3.6 Conditional Expressions
An expression of the form if x then y else z evaluates to y if x is a nonzero integer,
or to z if x is zero. This is a special form which only evaluates one of the branches y
and z, depending on the value of x. An exception is raised if x is not a machine integer.
Example (the factorial):

fact n = if n>0 then n*fact (n-1) else 1;

Conditional expressions can be nested in the usual way to obtain multiway condi-
tionals. This also includes the customary “else if” chains. For instance, here’s one
(rather inefficient) way to define the Fibonacci function, which computes the Fibonacci
numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . :

fib n = if n==0 then 0 else if n==1 then 1 else fib (n-2) + fib (n-1);
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3.7 Block Expressions
A number of special constructs are provided to define local functions, and to match ex-
pressions against a pattern and bind the variables in the pattern accordingly. A subex-
pression is then evaluated in the context of these local definitions. Note that the “lhs =
rhs” rule format employed in these constructs works in the same fashion as in global
definitions; we’ll discuss this syntax in more detail in Section 4.2.

• \x1 · · · xn -> y, where x1, . . . , xn are primary expressions (n ≥ 1), denotes a lambda
function which maps the given patterns x1, . . . , xn to an expression y; the latter
is also called the body of the lambda expression. The lambda expression returns
an anonymous function which, when applied to n argument values z1, . . . , zn, si-
multaneously matches all zi against the corresponding xi and returns the value of
the body y after substituting the pattern variables. An exception is raised if the
arguments zi do not match the patterns xi.

• case x of y1 = z1; y2 = z2; . . . end is a multiway conditional which matches the
value of x against each pattern yi and, as soon as a pattern matches, returns the
corresponding value zi (after substituting the pattern variables) as the value of the
case expression. An exception is raised if x doesn’t match any of the patterns yi.

• x when y1 = z1; y2 = z2; . . . end does local variable bindings. Each pattern yi is
matched against the value of zi, and finally x is evaluated in the context of the
resulting variable bindings. The bindings are executed in sequence, so that each
zi can refer to all variables bound in previous rules yj = zj, j = 1, . . . , i − 1. An
exception is raised if any of the yi fails to match the value of the corresponding zi.

• x with f y1 y2 . . . = z; . . . end defines local functions. These work like global func-
tion definitions (cf. Section 4) except that they have local scope and have access to
all local functions and variables in their scope. All functions in a with clause are
defined simultaneously, thus the definitions may be mutually recursive.

The first three forms are in fact all reducible to the with construct, using the follow-
ing equivalences. (In these rules, f always denotes a new, nameless function symbol
not occurring free in any of the involved subexpressions, and ⊥ stands for an exception
raised in case of a failed match.)

\x1 · · · xn -> y ≡ f with f x1 · · · xn = y; f _ · · · _ = ⊥ end
case x of y1 = z1; . . .; yn = zn end ≡ f x with f y1 = z1; . . .; f yn = zn; f _ = ⊥ end
x when y1 = z1; . . .; yn = zn end ≡ x when yn = zn end · · · when y1 = z1 end
x when y = z end ≡ case z of y = x end

Here are some examples to illustrate how these constructs work (more examples can
be found in Section 4.2 and throughout this manual). Lambdas are typically used for
little “one-off” functions passed as arguments to other functions, e.g.:
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squares n = map (\x -> x*x) (1..n);

Using a local function, we might also write this more verbosely as:

squares n = map square (1..n) with square x = x*x end;

So lambdas are often more concise, but local functions are a lot more versatile; they
can be recursive and consist of several rules which makes writing complicated defini-
tions more convenient. For instance, here is a definition of the Fibonacci function which
also illustrates the use of local variables bound with the when construct:

fib n = a when a,b = fibs n end with
fibs n = 0,1 if n<=0;

= b,a+b when a,b = fibs (n-1) end;
end;

We mention in passing that the algorithm we use here is much more efficient than
our earlier naive definition of the Fibonacci function, since the local fibs function com-
putes the Fibonacci numbers in pairs, which can be done in linear time. (This kind of
“wrapper/worker” design is fairly common in functional languages. An even better
algorithm along these lines is given in Section 8.2.)

Since the syntax of the with and when constructs looks quite similar, it is important
to note the differences between the two. Both constructs consist of a target expression to
be evaluated and a collection of rules. However, a with clause contains proper rewriting
rules defining one or more functions; these definitions are all done simultaneously and
may thus be mutually recursive. In contrast, a when clause consists of so-called pattern
bindings which simply evaluate some expressions and match them against the left-hand
side patterns in order to bind some local variables; these definitions are not recursive,
rather they are executed in sequence, so that each definition may refer to variables de-
fined earlier. So we may write, e.g.:

> 2*x when x = 99; x = x+2 end;
202

This looks a lot like imperative code, but it’s purely functional: First x is bound to 99,
and then this value is used in the second definition to bind a new variable x to x+2 = 101,
which then becomes the value of x used in the target expression 2*x of the when clause.
This “sequential execution” aspect is rather important, because it enables you to do a
series of “actions” (variable bindings and expression evaluations) in sequence by simply
enclosing it in a when clause; we’ll discuss some further examples of this in Section 4.2.

As a mnemonic that helps to keep with and when apart, think of when as conveying
a sense of time, indicating that its clauses are executed sequentially.

The case construct is similar to when in that it also binds local variables and then
evaluates a target expression in that context. In fact, the equivalences stated above tell
us that a case clause with a single rule works exactly like a when clause consisting of
a single definition; the only difference is that here the expression to be matched comes
first and the target expression last. Thus we might rewrite our earlier definition of the
Fibonacci function as follows:

20



fib n = case fibs n of a,b = a end with
fibs n = 0,1 if n<=0;

= case fibs (n-1) of a,b = b,a+b end;
end;

However, more typically case expressions are employed when there really are multi-
ple cases to consider; a default case may be indicated with the pattern _ (the anonymous
variable) which matches everything. For instance, here’s the factorial again, this time
using case:

fact n = case n of 0 = 1; _ = n*fact (n-1) if n>0 end;

By combining these constructs in different ways you can direct the flow of computa-
tion and compose complicated functions with ease in Pure. So in a sense the constructs
discussed here, along with recursion and conditional expressions, are Pure’s “control
structures”. Choosing the “right” construct is often a matter of convenience and per-
sonal style, although there are some idiomatic uses which we’ve mostly covered above;
more elaborate examples can be found in Section 8.

3.8 Lexical Scoping
The block expressions introduce a hierarchy of local scopes of identifiers, pretty much
like local function and variable definitions in Algol-like block-structured languages. It
is always the innermost binding of an identifier which is in effect at each point in the
program source. This is determined statically, by just looking at the program text, which
is why this scheme is known as static or lexical binding in the programming literature.
For instance:

> (x when x = x+1; x = 2*x end) + x;
2*(x+1)+x

To understand this result, note that the x on the right-hand side of the first local
binding, x = x+1, refers to a global symbol x here (as does the instance of x outside of
the when expression), which is unbound in this example. Also note that the above when
expression is actually equivalent to two nested scopes:

> (x when x = 2*x end when x = x+1 end) + x;
2*(x+1)+x

Local functions are handled in an analogous fashion, but there’s another subtlety
involved here, the so-called “funarg problem”. Note that local functions are first-class
objects in Pure which can be passed around just like any other value, and such a lo-
cal function may refer to other local functions and variables in its own context. This
isn’t much of a problem if a local function is only passed “downwards” (as a function
argument), since in this case all local entities a function refers to are still on the execu-
tion stack and thus readily available. But this isn’t true anymore if a function is passed
“upwards” (as a function result). In such a case lexical scoping dictates that the local
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function object carries with it the bindings of all local entities it references, so that these
live on and are accessible when the function later gets invoked in a different context.

Such a combination of a local function and its lexical environment is also called a
lexical closure. For instance, consider the following example of a function adder which
takes some value x as its argument and returns another function add which adds x to its
own argument:

> adder x = add with add y = x+y end;
> let a = adder 5; a;
add
> a 5, a 7;
10,12

As a lexical closure, the instance of add returned by adder 5 thus has an invisible
binding of the local x parameter to the value 5 attached to it. As demanded by lexical
scoping, this works the same no matter what other global or local bindings of x may be
in effect when our instance of adder is invoked:

> let x = 77; a 5, a 7 when x = 99 end;
10,12

3.9 Comprehensions
List and matrix comprehensions take the form [ x | clause; . . .] and { x | clause; . . .},
respectively, where x is an arbitrary template expression and each clause can be either a
generator or a filter clause.

• A generator clause takes the form y = z where y is a pattern to be matched against
each member of the value of z, binding the variables in y accordingly; only those
elements will be collected which match the pattern, other elements are quietly
discarded. z must evaluate to a list or a matrix.4

• A filter clause is an expression p yielding a machine int; only those elements will
be collected where the filter expression returns nonzero. An exception is raised if
p produces anything else but a machine int.

The clauses are processed from left to right, and each clause may refer to all variables
bound in earlier clauses. Finally the template expression is evaluated for each combina-
tion of bound variables, and the list or matrix of all resulting values becomes the value
of the comprehension.

Comprehensions are really just syntactic sugar for combinations of lambdas, con-
ditional expressions and various list and matrix operations. The interpreter does the

4Strings are permitted, too, and will be promoted to the corresponding list of characters. In fact,
comprehensions can draw values from any kind of container structure which implements the necessary
interface operations such as catmap.
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necessary expansions at compile time. For instance, list comprehensions are essentially
implemented according to the following equivalences:5

[ x | y = z ] ≡ map (\ y -> x ) z
[ x | y = z; clauses ] ≡ catmap (\ y -> [ x | clauses ]) z
[ x | p; clauses ] ≡ if p then [ x | clauses ] else []

Here, catmap combines cat (which concatenates a list of lists) and map (which maps
a function over a list). These operations are all defined in the prelude. Example:

> foo n m = [x,y | x=1..n; y=1..m; x<y];
> show foo
foo n m = catmap (\x -> catmap (\y -> if x<y then [(x,y)] else []) (1..m))
(1..n);
> foo 3 4;
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]

Matrix comprehensions work in a similar fashion, but with a special twist. If a matrix
comprehension draws values from several lists, it alternates between row and column
generation, so that customary mathematical notation works as expected:

> eye n = {i==j | i = 1..n; j = 1..n};
> eye 3;
{1,0,0;0,1,0;0,0,1}

Also, if a matrix comprehension draws values from another matrix, it preserves the
block structure of the input matrix:

> a::number*xs::matrix = {a*x|x=xs};
> 2*eye 2;
{2,0;0,2}
> {a*x|a={1,2;3,4};x=eye 2};
{1,0,2,0;0,1,0,2;3,0,4,0;0,3,0,4}

In any case, the result of a matrix comprehension must be something rectangular
(which is always guaranteed if there are no filter clauses or nontrivial patterns), other-
wise an exception is raised at runtime.

3.10 Special Forms
Pure normally evaluates expressions using call-by-value, i.e., all subexpressions of an
expression are evaluated before the expression itself. However, as already mentioned,
some operations are actually implemented as special forms which defer the evaluation
of some or all of their arguments until they are actually needed (i.e., doing call-by-name
evaluation). The most important predefined special forms are listed below.

5These rules assume that y is an unqualified variable. The case of a nontrivial pattern y is handled in
a fashion similar to filter clauses, in order to filter out unmatched elements in generator clauses.
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• The conditional expression if x then y else z is a special form with call-by-name
arguments y and z; only one of the branches is actually evaluated, depending on
the value of x.

• The logical connectives && and || evaluate their operands in short-circuit mode.
E.g., x && y immediately becomes false if x evaluates to false, without ever evalu-
ating y. Otherwise, y is evaluated and returned as the result of the expression.

• The “sequencing” operator $$ evaluates its left operand, immediately throws the
result away and then goes on to evaluate the right operand which gives the result
of the entire expression. This is commonly used to sequence operations involving
side effects, such as puts "Input:" $$ gets.

• The special form catch evaluates an expression (given as the second, call-by-name
argument) and returns its value, unless an exception occurs in which case the first
(call-by-value) argument, the handler, is applied to the reported exception value.
Exceptions may be raised through the runtime system in case of abnormal error
conditions such as failed conditionals and matches, or explicitly with the built-in
throw function. Example:

> catch handler (throw some_value);
handler some_value

Exception handlers may be nested, in which case control is passed to the inner-
most handler (which may also throw on exceptions it doesn’t want to handle).
Unhandled exceptions are reported by the interpreter.

Note that exception handling is an imperative programming feature which falls
outside the realm of “pure” term rewriting, but it can save a lot of trouble if you
need to handle error conditions deep inside a function. Another typical use case
are non-local value returns; see Section 8.8 for a practical example.

• The special form quote quotes an expression, i.e., quote x (which may also be
written as ’x) returns just x itself without evaluating it. This facility should be well
familiar to Lisp programmers. The built-in function eval can be used to evaluate
a quoted expression at a later time. For instance:

> let x = ’(2*42+2^12); x;
2*42+2^12
> eval x;
4180.0

It is worth noting here that Pure differs from Lisp in that local variables are substi-
tuted even inside quoted expressions. This makes it possible to fill in the variable
parts in a quoted “template” expression quite easily, without an arguably complex
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tool like Lisp’s “quasiquote” operation; the downside is that local variables can-
not be quoted. The Pure manual discusses various techniques for working with
Pure’s quote, so please refer to the manual for more details.

• Another way to defer the evaluation of an expression is the special form x& which
is called a thunk or a (lazy) future; see below for details.

Pure’s variation of thunks was adopted from Alice ML [17] to support lazy evalua-
tion, as opposed to eager evaluation which corresponds to the normal call-by-value eval-
uation order. Thunks are written as a postfix application x& which turns its argument x
into a kind of parameterless closure to be evaluated when x is first needed. The value is
then also memoized so that subsequent accesses just retrieve the already computed value.
This combination of call-by-name and memoization is also known as call-by-need evalu-
ation. E.g., the following expression “thunks” the computation square (6*7) until x+1
“forces” its evaluation, after which x has been memoized and is now readily available:

> let x = square (6*7)& with square x = x*x end; x;
#<thunk 0x7f7c91e71188>
> x+1; x;
1765
1764

Thunks can be employed to implement all kinds of lazy data structures. One par-
ticularly important example are lazy lists, also known as streams in the functional pro-
gramming literature. Basically, a stream is a list x:xs& whose tail has been thunked.
This enables you to work with infinite lists (or finite lists which are so huge that you
would never want to keep them in memory in their entirety). E.g., here’s one way to
define the infinite stream of all Fibonacci numbers:

> fibs = fibs 0L 1L with fibs a b = a : fibs b (a+b) & end;
> fibs;
0L:#<thunk 0x7f6be902d3d8>

The prelude has full support for lists with thunked tails so that most common list
operations such as concatenation, indexing and list comprehensions work with streams
in a lazy fashion. So, for instance, we may retrieve a finite segment of the Fibonacci
stream using list slicing:

> fibs!!(0..14);
[0L,1L,1L,2L,3L,5L,8L,13L,21L,34L,55L,89L,144L,233L,377L]

Note that our Fibonacci stream is really infinite, although at any time only a finite
segment of it is actually in memory. If you’re patient enough, you can retrieve any
member of this sequence:6

6One has to be careful, though, to prevent memory leaks which occur if streams are allowed to grow
indefinitely due to memoization. This is also the reason why we have defined the stream as a parameter-
less function in this example, rather than binding it to a global variable. The stream is thus recomputed
on the fly each time we need it, so that only a small part of it needs to be in memory at any time.
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> fibs!1000000;
1953282128707757731632014947596256332443... // lots of digits follow

The prelude also provides various operations for generating infinite stream values,
including arithmetic sequences with infinite upper bounds. For instance, we can denote
the list of all positive odd integers as follows (inf denotes infinity):

> let xs = 1:3..inf; xs;
1:#<thunk 0x7f89d58295c0>
> xs!!(0..10);
[1,3,5,7,9,11,13,15,17,19,21]

4 Definitions
Definitions at the toplevel of a Pure program take one of the following forms:

lhs = rhs; Rewriting rules always consist of a left-hand side pattern lhs (which must
be a simple expression, cf. Section 3.5) and a right-hand side rhs (which can be
any kind of Pure expression as described in the previous section). There are some
variations of the form of rewriting rules which will be discussed in Section 4.2.

def lhs = rhs; This is a special form of rewriting rule used to expand macro definitions
at compile time.

type lhs = rhs; Another special form of rewriting rule used in type definitions.

let lhs = rhs; This kind of definition binds every variable in the left-hand side pattern
to the corresponding subterm of the right-hand side (after evaluating the latter).
This works like a when clause, but serves to bind global variables occurring free on
the right-hand side of other function and variable definitions.

const lhs = rhs; This is an alternative form of let which defines constants rather than
variables. Unlike variables, const symbols can only be defined once, and thus
their values do not change during program execution.

4.1 The Global Scope
In contrast to local functions and variables introduced with with and when, the con-
structs listed above define symbols with global scope. To facilitate interactive usage, the
global scope is dynamic in Pure. This differs from the lexical scoping discussed in Section
3.8 in that the scope of each global definition extends from the point where a function,
macro, type, variable or constant is first defined, to the next point where the symbol
is redefined in some way. Dynamic scoping makes it possible, e.g., to redefine global
variables at any time:
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> foo x = c*x;
> foo 99;
c*99
> let c = 2; foo 99;
198
> let c = 3; foo 99;
297

Similarly, you can also refine your function definitions as you go along. The in-
terpreter automatically recompiles your definitions as needed when you do this. For
instance:

> bar x = x if x>=0;
> bar 1; bar (-1);
1
bar (-1)
> bar x = -x if x<0;
> bar 1; bar (-1);
1
1

The dynamic global scope is mainly a convenience for interactive usage. But it works
the same no matter whether the source code is entered interactively or being read from
a script, in order to ensure consistent behaviour between interactive and batch mode
operation. When a toplevel expression is evaluated, it will always use the definitions of
global functions, variables, etc. in effect at this point in the program.

4.2 Rule Syntax
All global and local definitions in Pure share the same kind of basic rule syntax lhs = rhs
with a pattern on the left-hand side and an arbitrary expression on the right-hand side.7

However, the meaning of this construct depends on the context. There are two different
kinds of rules being used in Pure:

• Rewriting rules: These are used to define functions, macros and types, and are
executed “from left to right” when evaluating an expression, by “reducing” the
left-hand side to the corresponding right-hand side. Lambdas and the rules used
in case expressions work in a similar fashion, although the applied function is
anonymous in this case and not mentioned in the patterns. If multiple rules are
present, they are considered in the order in which they are written, and the first
matching rule is picked. Rewriting rules can also be augmented with guards, and
repeated left-hand or right-hand sides can be “factored out”, as described below.

7Lambda notation slightly deviates from this, since it uses the syntax \lhs -> rhs adopted from Haskell.
But otherwise it works in the same fashion.
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• Simple rules: These rules are also called pattern bindings. They are executed “from
right to left”; the right-hand side is evaluated and then matched against the left-
hand side pattern, in order to bind the variables in the pattern. This kind of rule is
used in the let, const and when constructs, as well as in the generator clauses of
comprehensions. Each rule denotes a separate definition here.

The following special constructs are only allowed in rewriting rules. (While type
and macro definitions use the same general format, the rule syntax is more restricted
there, see Sections 4.6 and 4.7 for details.)

• Guards: A guarded equation has the form lhs = rhs if guard; This indicates that
the equation is only applicable if the guard evaluates to a non-zero integer. An
exception is raised if the guard doesn’t evaluate to a machine int. The guard may
be followed by with and when clauses whose scope extends to both the right-hand
side and the guard of the rule.

• Multiple right-hand sides: Repeated left-hand sides can be factored out, using the
syntax lhs = rhs1; = rhs2; . . . This expands to a collection of equations for the same
left-hand side.

• Multiple left-hand sides: Repeated right-hand sides can be factored out, using the
syntax lhs1 | lhs2 | . . . = rhs; This expands to a collection of equations for the same
right-hand side.

Here’s another definition of the factorial, to illustrate a typical use of multiple right-
hand sides and guards:8

fact n = n*fact (n-1) if n>0;
= 1 otherwise;

Multiple left-hand sides occur less frequently, but they can be useful if you need
different specializations of the same rule with different type tags on the left-hand side.
For instance:

square x::int |
square x::double = x*x;

The above definition expands to two equations which share the right-hand side of
the second equation, as if you had written:

square x::int = x*x;
square x::double = x*x;

8The otherwise keyword in the second equation denotes an empty guard. This is just syntactic sugar,
but it often improves readability since it points out the default case of a definition.
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Type rules are a case where the “|” notation is used quite often. Note that type defi-
nitions are in fact just definitions of special predicate functions in disguise. In addition,
the right-hand side can be omitted if it is just the constant true, in which case the mem-
bers of the type are simply the instances of the given patterns. This makes it possible to
write the definition of an algebraic type (which consists entirely of constructor patterns)
in the following style:

nonfix nil;
type bintree nil | bintree (bin x left right);

In the let, const and when pattern binding constructs, the left-hand side can be omit-
ted if it is the anonymous variable ‘_’, indicating that you don’t care about the value.
The right-hand side is still evaluated, if only for its side-effects. This is used most often
in conjunction with when clauses, e.g., to implement sequential prompt/input interac-
tions like the following:

> using system;
> s when puts "Enter a value:"; s = gets end;
Enter a value:
99
"99"

Here is another typical example which prints intermediate results for debugging
purposes:

> using math, system;
> solve p q = -p/2+sqrt d,-p/2-sqrt d if d>=0
> when d = p^2/4-q; printf "The discriminant is: %g\n" d; end;
> solve 4 2;
The discriminant is: 2
-0.585786437626905,-3.41421356237309
> solve 2 4;
The discriminant is: -3
solve 2 4

Note that this works because, as explained in Section 3.7, the individual definitions
in a when clause are executed in sequence. This makes it possible to use when as a
general-purpose sequencing construct similar to Lisp’s special form prog (but without
prog’s unstructured features such as “gotos” and non-local “returns”).

4.3 Function Definitions
Functions are defined by a collection of equations, using the rewriting rule syntax de-
scribed in the previous subsection. In this case, the left-hand side of the equation con-
sists of the function symbol, possibly followed by some argument patterns. Here are
some examples:
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// A simple definition with just one equation.
square x = x*x;

// The Ackerman function.
ack x y = y+1 if x == 0;

= ack (x-1) 1 if y == 0;
= ack (x-1) (ack x (y-1)) otherwise;

// Sum the elements of a list.
sum [] = 0;
sum (x:xs) = x+sum xs;

When the interpreter evaluates a function application, the equations for the given
function are tried in the order in which they are written. The first equation whose left-
hand side matches (and whose guard evaluates to a nonzero value, if applicable) is used
to rewrite the expression to the corresponding right-hand side, with the variables in the
left-hand side bound to their corresponding values. This means that “special case” rules
must be given before more general ones, as shown in the ack example above.

The sum example shows how to define a function by pattern-matching, in order to
“deconstruct” a structured argument value. This also works with user-defined data
structures, for which the programmer may introduce new constructor symbols in an
ad-hoc fashion (cf. Section 3.2). For instance, here’s how to implement an insertion
operation which can be used to construct a binary tree data structure made from the
bin and nil constructor symbols:

nonfix nil;
insert nil y = bin y nil nil;
insert (bin x L R) y = bin x (insert L y) R if y<x;

= bin x L (insert R y) otherwise;

Note that nil needs to be declared as a nonfix symbol here, so that the compiler
doesn’t mistake it for a variable. The following example illustrates how the above defi-
nition may be used to obtain a binary tree data structure from a list:

> foldl insert nil [7,12,9,5];
bin 7 (bin 5 nil nil) (bin 12 (bin 9 nil nil) nil)

Functions can be higher order, i.e., they may take functions as arguments or return
them as results. For instance, the generic accumulation function foldl is defined in the
prelude as follows:

foldl f a [] = a;
foldl f a (x:xs) = foldl f (f a x) xs;

Since operators are just function symbols in disguise, they can be used on the left-
hand side of equations as well. For instance, here is how you can define a lexicographic
comparison on lists:
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[] <= [] = 1;
[] <= y:ys = 1;
x:xs <= [] = 0;
x:xs <= y:ys = x<=y && xs<=ys;

Pure doesn’t enforce that you specify all equations of a global function in one go;
they may actually be scattered out through your program, and even over different
source files. The compiler only checks that all equations for a given function agree
on the number of function arguments. Thus the definition of a function can be refined
at any time, and it can be as polymorphic (apply to as many types of arguments) as you
like. Pure supports both parametric and ad-hoc polymorphism, and you can also mix both
styles. An example of parametric polymorphism is the following generic rule for the
square function which applies to any argument x whatsoever:

> square x = x*x;
> square 99;
9801
> square 99.0;
9801.0
> square (a+b);
(a+b)*(a+b)

Instead, you can also write separate rules for different argument types, which gives
you the opportunity to adjust the definition for each type of argument. For example,
the prelude defines the ‘*’ operator so that it works with different types of numbers. We
might want to be able to also “multiply” a string by a number, like in Python, so let’s
add a definition for it:

> 5*6;
30
> 5*6.0;
30.0
> 5*"abc";
5*"abc"
> n::int * s::string = strcat [s | i=1..n];
> 5*"abc";
"abcabcabcabcabc"

This is an example of ad-hoc polymorphism, better known as function overloading.
Note, however, that in contrast to overloaded functions in statically typed languages
such as C++ and Haskell, there’s really only one ‘*’ function here; the dispatching
needed to pick the right rule for the given argument is done by pattern matching at
runtime.

Pure gives you a lot of leeway in writing your definitions. Most functional lan-
guages enforce the constructor discipline, which demands that only “pure” constructors
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(i.e., function symbols without defining equations) should be used in the argument pat-
terns of a function definition. Pure does not have this restriction; in fact it doesn’t distin-
guish between “defined” functions and constructors at all. In particular, this allows you
to have so-called constructor equations. For instance, suppose that we want lists to auto-
matically stay sorted. In Pure we can do this by simply adding the following equation
for the list constructor ‘:’.

> x:y:xs = y:x:xs if x>y;
> [13,7,9,7,1]+[1,9,7,5];
[1,1,5,7,7,7,9,9,13]

In the same vein, you can also deal with algebraic identities in a direct fashion. For
instance, let’s try some symbolic rewriting rules for associativity and distributivity of
the + and * operators:

> (x+y)*z = x*z+y*z; x*(y+z) = x*y+x*z;
> x+(y+z) = (x+y)+z; x*(y*z) = (x*y)*z;
> (a+b)*(a+b);
a*a+a*b+b*a+b*b

Note that none of this is possible in Haskell and ML with their segregation of defined
functions and data constructors. You’ll basically have to write your own little term
rewriting interpreter in those languages if you want to do such calculations.

Pure also provides a way to encapsulate such sets of algebraic simplification rules in
a with clause, so that their scope is confined to a particular expression and different rule
sets can be applied in different situations. This is done with a special predefined reduce
macro which can be used in a way similar to Mathematica’s ReplaceAll function. For
instance:

> run // restart the interpreter to clear the above rules
> reduce ([13,7,9,7,1]+[1,9,7,5]) with x:y:xs = y:x:xs if x>y end;
[1,1,5,7,7,7,9,9,13]
> expand = reduce with (a+b)*c = a*c+b*c; a*(b+c) = a*b+a*c; end;
> factor = reduce with a*c+b*c = (a+b)*c; a*b+a*c = a*(b+c); end;
> expand ((a+b)*2);
a*2+b*2
> factor (a*2+b*2);
(a+b)*2

Before you run off and start programming your own computer algebra system now,
be warned that term rewriting is just a small part of that. Out of the box, Pure doesn’t
offer any of the more advanced algorithms such as polynomial factorization and sym-
bolic integration which make computer algebra really useful. Nevertheless, the kind of
symbolic manipulations sketched out above can be pretty handy in “ordinary” code as
well; see Section 8.10 for a practical example.
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4.4 Variable Definitions
Variables may occur free on the right-hand sides of function definitions, in which case
they can be given values with let:

> foo x = c*x; foo 21;
c*21
> let c = 2; foo 21;
42

The let construct is also commonly used interactively to bind variable symbols to
intermediate results so that they can be reused later, e.g.:

> let x = 23/14; let y = 5*x; x; y;
1.64285714285714
8.21428571428571

Pattern matching works in variable definitions as usual:

> let y,x = x,y; x; y;
8.21428571428571
1.64285714285714

4.5 Constant Definitions
The definition of a constant looks like a variable definition, using the const keyword in
lieu of let:

> const c = 299792.458; // the speed of light, in km/s
> const ly = 365.25*24*60*60*c; // the length of a lightyear, in km
> lys x = x*ly; // the length of x lightyears
> show lys
lys x = x*9460730472580.8;

In contrast to a global variable, a constant cannot change its value once it is defined,
so its value can be substituted directly into subsequent definitions, as shown above. A
constant can also be declared as nonfix, in which case its value also gets substituted
into the left-hand side of equations. This is the case, in particular, for the predefined
constants true and false which are declared nonfix in the prelude:

> show true false
nonfix false;
const false = 0;
nonfix true;
const true = 1;
> check x = case x of true = "yes"; false = "no"; _ = "dunno" end;
> show check
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check x = case x of 1 = "yes"; 0 = "no"; _ = "dunno" end;
> map check [true,false,99];
["yes","no","dunno"]

Note that declaring a symbol nonfix makes it “precious”, i.e., the symbol then can-
not be used as a (local) variable any more. Therefore const symbols are almost never
declared nonfix in the standard library; the predefined truth values are a notable ex-
ception.

4.6 Type Definitions
In Pure the definition of a type takes a somewhat unusual form, since it is not a static
declaration of the structure of the type’s members, but rather an arbitrary predicate
which determines through a runtime check which terms belong to the type. Thus the
definition of a type looks more like an ordinary function definition (and that’s essen-
tially what it is, although Pure types live in their own space where they can’t be con-
fused with functions of the same name).

Syntactically, a type definition is a collection of rewriting rules which are each pre-
fixed with the type keyword. No multiple right-hand sides are allowed in these defini-
tions, but multiple left-hand sides are ok. Also, since a type definition actually defines a
predicate denoting the terms belonging to the type, at most one argument is permitted
on the left-hand side, and the result of invoking the predicate on a given term should
be a truth value indicating whether the term belongs to the type or not. (If the result is
anything but a nonzero machine integer, the predicate fails.)

In the simplest case, a type may just match a given left-hand side pattern. For in-
stance:

type zero 0 = true;

This type consists of the constant (machine int) 0 and nothing else. As already men-
tioned, if the right-hand side is just true then it can also be omitted:

type zero 0;

This kind of notation is convenient for any kind of “algebraic” type which consists
of a collection of constructor symbols with different arities. Note that the type symbol
has to be repeated for each type rule or constructor pattern. For instance:

nonfix nil;
type bintree nil | bintree (bin x left right);

In general, the right-hand side of a type rule may be any expression returning a truth
value. For instance, the following type denotes the positive machine ints.

type nat x::int = x>0;

In either case, the type symbol can then be used as a type tag on the left-hand side
of other definitions, as described in Section 3.5. For instance, the nat type is used in the
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following definition of the factorial in order to ensure that the argument is a positive
integer (note that this definition would otherwise loop on zero or negative arguments).

> fact n::nat = if n==1 then 1 else n * fact (n-1);
> map fact (0..10);
[fact 0,1,2,6,24,120,720,5040,40320,362880,3628800]

New type rules can be added at any time. For instance, we can extend the nat type
to bigints by just adding another type rule:

type nat x::bigint = x>0;

Without any further ado, our definition of the fact function now works with posi-
tive bigints, too:

> fact 30L;
265252859812191058636308480000000L

Type definitions can also be recursive. The compiler optimizes simple kinds of re-
cursive type definitions so that the type check can be done in constant stack space, if
possible. For instance, the type of proper lists is defined in the prelude as follows:

type rlist [] | rlist (x : xs::rlist);

Note that such a recursive type check needs linear time. Since type checks are done
at runtime, it may thus become a serious performance hog; if used in a careless manner,
it may easily turn a linear time algorithm into a quadratic one. (The same considerations
apply to types defined by arbitrary predicates, unless they can be computed in constant
time.) For instance, the following should be avoided:

sum xs::rlist = if null xs then 0 else head xs + sum (tail xs);

One way to deal with such situations is to confine the type check to a so-called
“wrapper” function which checks the type once for the entire list and then proceeds
to call another “worker” function which implements the real algorithm without further
type checks on the list argument:

sum xs::rlist = sum xs with
sum xs = if null xs then 0 else head xs + sum (tail xs);

end;

Type aliases can be defined by omitting the left-hand side parameter and putting the
target type symbol on the right-hand side. This is commonly used for numeric types, to
document that they actually stand for special kinds of quantities:

type speed = double;
type size = int;

The right-hand side can also be an existing ordinary predicate instead. In particular,
this may also be a curried function or operator section which expects exactly one ad-
ditional parameter. For instance, we might define the type of all positive numbers in a
generic way as follows:
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type positive = (>0);

Conversely, a type symbol can be converted to an ordinary predicate with the typep
function:

> map (typep positive) [-1,0,1];
[0,0,1]

The right-hand side of a type definition may also be omitted altogether. This just
declares the type symbol and makes it an empty type, so a proper type definition still
has to be given later.

type thing;

Note that since a type definition may involve any unary predicate, any kind of rela-
tionship between two types is possible. One type may be a subtype of another, or they
may be completely unrelated (i.e., disjoint), or some terms may belong to both types,
while others don’t. This gives the programmer a great amount of flexibility in data
modelling.

Recent Pure versions also provide ways to define so-called enumerated and interface
types. At present, these features are still a bit experimental and subject to change. So we
only present a few code snippets below to whet your appetite; please refer to the Pure
manual for details.

/* Enumerated data types are equipped with the usual operations, such as
basic arithmetic, comparisons and arithmetic sequences. */

using enum;
enum day [sun,mon,tue,wed,thu,fri,sat];

/* Interface types are specified by their API, i.e., the operations they
support. Here’s an example of a stack data type */

interface stack with
push s::stack x;
pop s::stack;
top s::stack;

end;

/* A possible implementation of the stack type in terms of lists. */

stack xs::list = xs;

push xs@[] x | push xs@(_:_) x = x:xs;
pop (x:xs) = xs; top (x:xs) = x;
pop [] | top [] = throw "empty stack";
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4.7 Macro Definitions
Macros employ a restricted kind of rewriting rules (no guards, no multiple right-hand
sides) which are applied by the interpreter at compile time. In Pure these are typically
used to define custom special forms and to perform inlining of function calls and other
kinds of source-level optimizations. Macros are substituted into the right-hand sides
of function, constant and variable definitions. All macro substitution happens before
constant substitutions and the actual compilation step. Macros can be defined in terms
of other macros (also recursively), and are evaluated using call by value (i.e., macro calls
in macro arguments are expanded before the macro gets applied to its parameters).

For instance, the prelude defines the following macro which eliminates saturated
instances of the right-associative function application operator ‘$’:

def f $ x = f x;

This is a simple example of an optimization rule which helps the compiler generate
better code. In this case, saturated calls of the $ operator (which is also defined as an
ordinary function in the prelude) are “inlined” at compile time. Example:

> foo x = bar $ bar $ 2*x;
> show foo
foo x = bar (bar (2*x));

You can also use macros to define your own special forms. The right-hand side
of a macro rule may be an arbitrary Pure expression involving conditionals and block
expressions. These special expressions are never evaluated during macro substitution,
they just become part of the macro expansion. E.g., the following rule defines a macro
timex which employs the function clock from the system module to report the cpu time
in seconds needed to evaluate a given expression, along with the computed result:

> using system;
> def timex x = (clock-t0)/CLOCKS_PER_SEC,y when t0 = clock; y = x end;
> count n = if n>0 then count(n-1) else n;
> timex (count 1000000);
0.4,0

This works because the call to count actually gets substituted into the when clause in
the definition of timex:

> foo = timex (count 1000000);
> show foo
foo = (clock-t0)/1000000,y when t0 = clock; y = count 1000000 end;

Pure macros are lexically scoped, i.e., the binding of symbols in the right-hand-side
of a macro definition is determined statically by the text of the definition, and macro
parameter substitution also takes into account binding constructs, such as with and
when clauses, in the right-hand side of the definition. Macro facilities with these pleas-
ant properties are also known as hygienic macros. They are not susceptible to so-called
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“name capture”, which makes macros in less sophisticated languages bug-ridden and
hard to use.

Please note that we barely scratched the surface here. In particular, Pure also lets you
quote conditionals and block expressions in which case they become simple terms which
can be manipulated by macros and ordinary functions in a direct fashion. Using some
special library functions it is even possible to inspect and modify the rewriting rules of
the running program, which gives the programmer access to powerful metaprogram-
ming capabilities on a par with those provided by the Lisp programming language.
These advanced features of Pure’s macro system are beyond the scope of this guide,
however, so we refer the reader to the Pure manual for details.

5 Programs and Modules
A Pure program is basically just a collection of definitions, symbol declarations and
expressions to be evaluated. Pure doesn’t support separate compilation right now, but it
is possible to break down a program into a collection of source modules. Moreover, Pure
provides a simple but effective namespace facility which lets you avoid name clashes
between symbols of different modules and keep the global namespace tidy and clean.

5.1 Modules
A Pure module is just an ordinary script file. A special kind of using declaration can be
used to import one Pure script in another. In particular, this declaration allows you to
import definitions from standard library modules other than the prelude. For instance:

using math;

This actually includes the source of the math.pure script at this point in your pro-
gram. Each module is included only once, at the point where the first using declaration
for the module is encountered. You can also import multiple scripts in one go:

using array, dict, set;

Moreover, Pure provides a notation for qualified module names which can be used to
denote scripts located in specific package directories, e.g.:

using examples::libor::bits;

In fact this is equivalent to the following using clause which spells out the real file-
name of the script:

using "examples/libor/bits.pure";

Both notations can be used interchangeably; the former is usually more convenient,
but the latter allows you to denote scripts whose names aren’t valid Pure identifiers.

Modules are first searched for in the directories of the scripts that use them; failing
that, the interpreter also looks in the Pure library directory and some other “include
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directories” which may be configured with environment variables and/or command
line options of the interpreter; please see the Pure manual for details.

5.2 Namespaces
All modules in your program share one global namespace, the default namespace, which
is where new symbols are created by default, and which also holds most of the standard
library operations. To prevent name clashes, Pure allows you to put symbols into dif-
ferent user-defined namespaces. Like in C++, namespaces are completely decoupled
from modules. Thus it is possible to equip each module with its own namespace, but
you can also have several namespaces in one module, or namespaces spanning several
modules.

New namespaces are created with the namespace declaration, which also switches to
the given namespace (makes it the current namespace), so that subsequent symbol dec-
larations create symbols in that namespace rather than the default one. For instance, in
order to create two symbols with the same print name foo in two different namespaces
foo and bar, you can write:

namespace foo;
public foo;
foo x = x+1;
namespace bar;
public foo;
foo x = x-1;
namespace;

The public keyword makes sure that the declared symbols are visible out of their
“home” namespace. (You can also declare symbols as private, see Section 5.3 below.)
New symbols are always created as public symbols in the current namespace by de-
fault, so in this case we can also simply write:9

namespace foo;
foo x = x+1;
namespace bar;
foo x = x-1;
namespace;

Also note that just the namespace keyword by itself in the last line switches back to
the default namespace. For convenience, there’s also a “scoped” namespace construct
which indicates the extent of the namespace definition explicitly with a with ... end
clause, so instead of the above you can also write:10

9This also works for any “defining” occurrence of a symbol on the left-hand side of an equation (such
as the foo symbol in the example above), even if a symbol of the same name is already visible at the point
of the definition. The Pure manual explains this in detail.

10Scoped namespaces can also be nested to an arbitrary depth, please check the Pure manual for details.

39



namespace foo with
foo x = x+1;
end;
namespace bar with
foo x = x-1;
end;

In any case, we can now refer to the symbols we just defined using qualified symbols
of the form namespace::symbol:11

> foo::foo 99;
100
> bar::foo 99;
98

The namespace prefix can also be empty, to explicitly denote a symbol in the default
namespace. (This is actually a special instance of an “absolute” namespace qualifier, to
be explained in Section 5.4.)

> ::foo 99;
foo 99

As it is rather inconvenient if you always have to write identifiers in their fully qual-
ified form, Pure allows you to specify a list of search namespaces which are used to
look up symbols not in the default or the current namespace. This is done with the
using namespace declaration, as follows:

> using namespace foo;
> foo 99;
100
> using namespace bar;
> foo 99;
98
> using namespace;

A using namespace declaration without any namespace arguments gets you back
to the default empty list of search namespaces. In general, the scope of a namespace or
using namespace declaration extends from the point of the declaration up to the next
declaration of the same kind (or up to the matching end, in the case of a scoped name-
space declaration). Moreover, the scope is always confined to a single source file, i.e.,
namespace declarations never extend beyond the current script, and thus each source
module starts in the default namespace with an empty list of search namespaces.

11One of Pure’s worst idiosyncrasies is that the :: symbol is used for both type tags in patterns and
namespace qualification. Thus a construct like foo::int may denote either a qualified identifier or a
tagged variable (see Section 3.5) in Pure. The compiler assumes the former if foo is a valid namespace
identifier. You can place spaces around the :: symbol if this is not what you want. Since spaces are not
allowed in qualified identifiers, this makes it clear that you mean a tagged variable instead. You’ll also
have to do this if either the variable or the type symbol is a qualified identifier.
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Unless an absolute namespace prefix is used (see Section 5.4), symbols are always
looked up first in the current namespace (if any), then in the search namespaces (if
any), and finally in the default namespace. It is possible to list several namespaces in a
using namespace declaration, and in order to prevent name clashes you can also specify
exactly which symbols to import from a namespace, as follows:

using namespace name (sym1 sym2 ...);

For instance, consider:

namespace foo with
foo x = x+1;
end;
namespace bar with
foo x = x-1;
bar x = x+1;
end;

In this case, using both namespaces will give you a name clash on the foo symbol:

> using namespace foo, bar;
> foo 99;
<stdin>, line 15: symbol ’foo’ is ambiguous here

To resolve this, you might use a qualified identifier, but you can also selectively
import just the bar symbol from the bar namespace:

> using namespace foo, bar (bar);
> foo 99;
100
> bar 99;
100
> bar::foo 99;
98

Recent Pure versions also provide a quick way to switch namespaces right in the
middle of an expression using a so-called namespace bracket. This is a pair of outfix
symbols which can optionally be associated with a namespace in its declaration; the
outfix symbols must have been declared beforehand. For instance:

outfix « »;
namespace foo ( « » );
infixr (::^) ^;
x^y = 2*x+y;
namespace;

The code above introduces a foo namespace which defines a special variation of the
(^) operator. It also associates the namespace with the « » brackets so that you can
switch to the foo namespace in an expression as follows:
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> «(a+b)^c»+10;
2*(a+b)+c+10

Note that the namespace brackets themselves are removed from the resulting ex-
pression; they are only used to temporarily switch the namespace to foo inside the
bracketed subexpression. This works pretty much like a namespace declaration (so
any active search namespaces remain in effect), but is limited in scope to the brack-
eted subexpression and only gives access to the public symbols of the namespace (like
a using namespace declaration would do). The rules of visibility for the namespace
bracket symbols themselves are the same as for any other symbols, so they need to be
in scope if you want to denote them in unqualified form.

5.3 Private Symbols
Pure also allows you to have private symbols, as a means to hide away internal opera-
tions which shouldn’t be accessed directly by client programs. The scope of a private
symbol is confined to its namespace, i.e., the symbol is visible only if its “home” name-
space is the current namespace. Symbols are declared private by using the private
keyword (instead of public) in the symbol declaration:

> namespace secret;
> private baz;
> // ’baz’ is a private symbol in namespace ’secret’ here
> baz x = 2*x;
> // you can use ’baz’ just like any other symbol here
> baz 99;
198
> namespace;

Note that, at this point, secret::baz has become invisible, because we switched
back to the default namespace. This holds even if you have secret in the search name-
space list:

> using namespace secret;
> baz 99; // this creates a new symbol ’baz’ in the default namespace
baz 99
> secret::baz 99;
<stdin>, line 27: symbol ’secret::baz’ is private here

5.4 Hierarchical Namespaces
Namespace identifiers can themselves be qualified identifiers in Pure, which enables
you to introduce a hierarchy of namespaces. This is useful, e.g., to group related name-
spaces together. For instance:
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namespace my;
namespace my::old;
foo x = x+1;
namespace my::new;
foo x = x-1;
namespace;

Note that the namespace my, which serves as the parent namespace, must be created
before creating the my::old and my::new namespaces, even if it does not contain any
symbols of its own. After these declarations, the my::old and my::new namespaces are
part of the my namespace and will be considered in name lookup accordingly, so that
you can write:

> using namespace my;
> old::foo 99;
100
> new::foo 99;
98

Sometimes it is necessary to tell the compiler to use a symbol in a specific name-
space, bypassing the usual symbol lookup mechanism. For instance, suppose that we
introduce another global old namespace and define yet another version of foo in that
namespace:

namespace old;
foo x = 2*x;
namespace;

Now, if we want to access that function, with my still active as the search namespace,
we cannot simply refer to the new function as old::foo, since this name will resolve to
my::old::foo instead. As a remedy, the compiler accepts an absolute qualified identifier
of the form ::old::foo. This bypasses name lookup and thus always yields exactly the
symbol in the given namespace:12

> old::foo 99;
100
> ::old::foo 99;
198

6 C Interface
Accessing C functions is dead easy in Pure. You just need an extern declaration of the
function, which is a simplified kind of C prototype. The function can then be called in
Pure just like any other. Example:

12Note that the notation ::foomentioned earlier, which denotes a symbol foo in the default namespace,
is just a special instance of this notation for the case of an empty namespace qualifier.
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> extern double sin(double);
> sin 0.3;
0.29552020666134

Multiple prototypes can be given in one extern declaration, separating them with
commas, and the parameter types can also be annotated with parameter names (these
are effectively treated as comments by the compiler, so they serve informational pur-
poses only):

extern double sin(double), double cos(double);
extern double tan(double x);

An external function can also be imported under an alias:

extern double sin(double) = mysin;

The interpreter makes sure that the parameters in a call match; if not, the call is
treated as a normal form expression by default, which gives you the opportunity to
extend the external function with your own Pure equations. For instance:

> sin 1;
sin 1
> sin x::int = sin (double x);
> sin 1;
0.841470984807897

The range of supported C types encompasses void, bool, char, short, int, long,
float, double, as well as arbitrary pointer types, i.e.: void*, char*, etc. Pure strings
and matrices can be passed for char*, int* and double* pointers, respectively. The
precise rules for marshalling Pure objects to corresponding C types are explained in the
Pure manual. In practice these should cover most kinds of calls that need to be done
when interfacing to C libraries.13

When resolving external C functions, the runtime first looks for symbols in the C
library and Pure’s runtime library. Thus all C library and Pure runtime functions are
readily available in Pure programs. Functions in other (shared) libraries can be accessed
with a special form of the using clause; these are searched for on a user-configurable
path, please see the Pure manual for details. For instance:

using "lib:myutils";

In a similar fashion you can also load LLVM bitcode (.bc) files. In this case you don’t
even have to bother with the extern declarations, the interpreter extracts these from the
bitcode files and generates them automatically for you.

using "bc:myutils";

13Two useful addons available as separate packages are the pure-ffi module which adds some func-
tionality not covered in Pure’s built-in C interface (such as calling back from C into Pure) and the pure-gen
script which makes it easy to generate the needed extern declarations for large C libraries.
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Moreover, if you have the necessary LLVM compilers installed, C code as well as
code written in a number of other languages can be inlined directly in Pure scripts,
using the %< ... %> construct. Currently this works with C, C++ and Fortran, using
clang, dragonegg or (for older LLVM versions) llvm-gcc.14 For instance, here is a little
example which calls some Fortran 90 code to compute the factorial:

%< -*- Fortran90 -*-
function fact(n) result(p)
integer n, p
p = 1
do i = 1, n

p = p*i
end do

end function fact
%>

fact n::int = fact_ {n};
map fact (1..10);

7 The Interpreter
This section assumes that you already have the Pure interpreter up and running on
your system. Sources and installation instructions can be found at http://purelang.
bitbucket.org. Binary packages and ports for a number of systems including Linux
(Arch and Ubuntu), macOS and Windows are also available, please check the corre-
sponding links on the Pure website for details.

7.1 Running the Interpreter
Use pure -h to get help about the command line options. Just the pure command with-
out any command line parameters invokes the interpreter in interactive mode, so that
you can enter definitions and expressions to be evaluated at the ‘>’ command prompt.
Exit the interpreter by typing either the quit command or the end-of-file character
(Ctrl-D on Unix systems) at the beginning of the command line.

Some other important ways to invoke the interpreter are summarized below.

pure -g Runs the interpreter interactively, with debugging support.

pure -b script . . . Runs the given scripts in batch mode.

14Pure also offers special support for Grame’s functional DSP programming language Faust; this re-
quires that you have an LLVM-capable version of the Faust compiler installed, see the “LLVM backend
for Faust” website for details.
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pure -i script . . . Runs the given scripts in batch mode as above, but then enters the
interactive command loop. (Add -g to also get debugging support, and -q to
suppress the sign-on message.)

pure -c script [-o prog] Batch compilation: Runs the given script, compiling it to a na-
tive executable prog (a.out by default).

pure script [arg . . . ] Runs the given script with the given parameters. The script name
and command line arguments are available in the global argv variable.

The latter form of invocation is useful, in particular, in “shebangs” which allow you
to run a script directly from the shell, with additional command line parameters being
passed to the script. To these ends, simply add a line like the following at the beginning
of your main script and make the script file executable. (This only works in Unix shells.)

#!/usr/local/bin/pure

With the -c option, you can also compile a script to a native executable which can be
run without the interpreter. This needs the basic LLVM toolchain (specifically, opt and
llc). It is also possible to create native assembler (.s) and object (.o) files which can
be linked into other programs and libraries, or LLVM assembler (.ll) and bitcode (.bc)
files which can be processed with the LLVM toolchain. Please refer to the Pure manual
for details.

When running interactively, -g enables the built-in symbolic debugger. See Section
7.4 below for details.

The Pure distribution comes with an Emacs mode which lets you run the Pure in-
terpreter in an Emacs buffer. Normally, the mode will be installed along with the in-
terpreter; please check the Pure installation instructions for details. Add the following
lines to your .emacs startup file (additional customization options are described at the
beginning of the pure-mode.el file):

(require ’pure-mode)
(setq auto-mode-alist (cons ’("\\.pure$" . pure-mode) auto-mode-alist))
(add-hook ’pure-mode-hook ’turn-on-font-lock)
(add-hook ’pure-eval-mode-hook ’turn-on-font-lock)

Having your script file loaded in Emacs, you can then use the keyboard command
Ctrl-C Ctrl-K to run the script interactively in an Emacs buffer. Pure mode has many
more features which let you edit and test Pure scripts with ease, so please check the
online documentation for more information.

Syntax highlighting support is available for a number of other popular text editors,
such as Vim, Gedit and Kate. The Kate support is particularly nice because it also
provides code folding for comments and block structure. See the etc directory in the
sources. Installation instructions are contained in the language files.
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On Windows, there’s another GUI frontend for the interpreter named “PurePad”.
This is a kind of mini-IDE which lets you edit and run Pure scripts.

The Pure interpreter has support for “tags” files in both emacs (“etags”) and vi
(“ctags”) format, which can be used to quickly locate the global declarations and defini-
tions of a Pure script in editors and other utilities like the less program which provide
this feature. Tags files can be created with the --etags and --ctags options of the in-
terpreter, please see the Pure manual for details. Emacs Pure mode also provides the
“Make Tags” command to create a tags file in Emacs.

7.2 Interactive Commands
When the interpreter is running in interactive mode, you can just type your definitions
and expressions to be evaluated at the ‘>’ command prompt. Basic arithmetic, logical,
string, list and matrix operations are defined in the standard prelude which is normally
loaded on startup, so that you can start using the interpreter as a sophisticated kind of
desktop calculator right away. For instance:

> fib n = if n<=1 then n else fib (n-2) + fib (n-1);
> map fib (0..10);
[0,1,1,2,3,5,8,13,21,34,55]

A convenience for interactive usage is the ans function which gives access to the
most recent result printed by the interpreter:

> last ans;
55

The interpreter also understands the following special commands for interactive us-
age. These have to be typed on a line by themselves, starting with the command key-
word in column one.15 A closer description of the commands is available in the Pure
manual, which can be invoked in the interpreter with the help command. (This requires
an external html browser, w3m by default; you can set your preferred browser with the
PURE_HELP or the BROWSER environment variable.)

! command Shell escape.

break [symbol . . . ] Set breakpoints. See Section 7.4 below.

bt Print backtraces. See Section 7.4 below.

cd dir Change the current working dir.

15Thus you can “escape” normal Pure code by indenting a line with one or more spaces; this is neces-
sary if an expression starts with an identifier which looks like a command word.

Recent versions of the Pure interpreter also provide an alternative command syntax in which interac-
tive commands are escaped by prefixing them with a special character at the very beginning of the line.
The command prefix is set with the --escape option of the interpreter or the PURE_ESCAPE environment
variable; please check the corresponding section in the Pure manual for details.
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clear [option . . . ] [symbol . . . ] Purge the definitions of the given symbols (variables, func-
tions, etc.). Also, clear ans clears the most recent result (see the description of ans
above).

del [option . . . ] [symbol . . . ] Delete breakpoints and tracepoints. See Section 7.4 below.

dump [-n filename] [option . . . ] [symbol . . . ] Dump a snapshot of the currently defined sym-
bols to a text file. The file is in Pure syntax, so it can be loaded again with the run
command, see below.

help [target] Display the Pure manual, or some other bit of documentation. This re-
quires an html browser (w3m by default, you can set a different browser program
with the BROWSER environment variable). Try help online-help for more infor-
mation on the online help facility.

ls [args . . . ] List files (shell ls(1) command).

mem Print current memory usage. This reports the number of expression cells currently
in use by the program, along with the size of the freelist (the number of allocated
but currently unused expression cells).

pwd Print the current working dir (shell pwd(1) command).

quit Exit the interpreter.

run [-g|script] Source the given script file and add its definitions to the current envi-
ronment. If the script file is omitted, run restarts the interpreter with all origi-
nal options and arguments, which is handy to quickly reload a script after some
source files have been changed. In the latter case, you may also add the -g option
to indicate that the interpreter should be invoked with debugging support.

show [option . . . ] [symbol . . . ] Show the definitions of symbols in various formats.

stats [-m] [on|off] Print some statistics after an expression evaluation. By default, this
just prints the cpu time in seconds for each evaluation. With the -m option you
also get information about the expression memory used in a computation.

trace [option . . . ] [symbol . . . ] Set tracepoints. See Section 7.4 below.

Commands that accept options generally also understand the -h (help) option which
prints a brief summary of the command syntax and the available options.

The clear, dump and show commands accept a common set of options for specifying
a subset of symbols and definitions on which to operate. Options may be combined,
thus, e.g., show -mft is the same as show -m -f -t. Some options specify optional nu-
meric parameters; these must follow immediately behind the option character if present.
When invoked without arguments, -t1 is the default, which restricts the command to
“temporary” definitions entered interactively at the command prompt.
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-c, -f, -m, -v, -y Selects constant, function, macro, variable and type symbols, respec-
tively. If none of these are specified, then all categories of symbols are selected.

-g Indicates that the following symbols are actually shell glob patterns and that all
matching symbols should be selected.

-p[flag] Select only private symbols if flag is nonzero (the default), otherwise (flag is
zero) select only public symbols (cf. Section 4). If this option is omitted then both
private and public symbols are selected.

-t[level] Select symbols and definitions at the given level of definitions and above. The
executing program and all imported modules (including the prelude) are at level 0,
while interactive definitions are at the “temporary” level 1 and above (see Section
7.3 below). If level is omitted, it defaults to the current definitions level.

The show command provides you with a quick means to inspect the definitions of
functions, variables, constants and macros. For instance:

> fib n = if n<=1 then n else fib (n-2) + fib (n-1);
> let fibs = map fib (0..10);
> show
fib n = if n<=1 then n else fib (n-2)+fib (n-1);
let fibs = [0,1,1,2,3,5,8,13,21,34,55];

The same information can also be written to a file with the dump command, which
gives you a quick means to save the results of an interactive session. The written file
is a Pure script which is ready to be loaded by the interpreter again.16 By default, dump
writes definitions to the .pure file which is sourced automatically when the interpreter
starts up in interactive mode. You can also specify a different filename with the -n
option and later source the file with the run command.

The show command understands a number of additional options which let you select
an output format and choose the kind of information to print:

-a Disassembles pattern matching automata for the left-hand sides of rules.

-d Disassembles LLVM IR, showing the generated LLVM assembler code of a function.

-e Annotate printed definitions with lexical environment information (de Bruijn in-
dices, subterm paths).

-l Long format, prints definitions along with the summary symbol information. This
implies -s.

-s Summary format, print just summary information about listed symbols.

16Unfortunately, this isn’t perfect because some kinds of Pure objects don’t have a textual representa-
tion from which they could be reconstructed. But in any case you can load the saved script in a text editor
and use it as a starting point for creating your own script file.
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The -a, -d and -e options are most useful for debugging the interpreter itself, but
the -l and -s options are helpful for ordinary usage. For instance:

> show -s
fib fun 1 args, 1 rules
fibs var
0 constants, 1 variables, 0 macros (0 rules), 1 functions (1 rules),
0 types (0 rules)
> show -l
fib fun fib n = if n<=1 then n else fib (n-2)+fib (n-1);
fibs var fibs = [0,1,1,2,3,5,8,13,21,34,55];
0 constants, 1 variables, 0 macros (0 rules), 1 functions (1 rules),
0 types (0 rules)

Note that some of the options (in particular, -d) may produce excessive amounts
of information. By setting the PURE_MORE environment variable accordingly, you can
specify a shell command to be used for paging, usually more(1) or less(1). PURE_LESS
does the same for evaluation results printed by the interpreter.

7.3 Definition Levels
There are a number of other commands which let you manipulate subsets of definitions
interactively. To these ends, interactive definitions are organized as a stack of levels.
The prelude and other loaded scripts are all at level 0, while interactive input starts in
level 1. Each save command adds a new level, while each clear command (without
any parameters) purges the definitions on the current level and returns you to the most
recent level. For instance:

> save
save: now at temporary definitions level #2
> foo (x:xs) = x+foo xs;
> foo [] = 0;
> show
foo (x:xs) = x+foo xs;
foo [] = 0;
> foo (1..10);
55
> clear
This will clear all temporary definitions at level #2.
Continue (y/n)? y
clear: now at temporary definitions level #1
> show
> foo (1..10);
foo [1,2,3,4,5,6,7,8,9,10]
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It’s also possible to have definitions in the current level override existing definitions
on previous levels; the override command enables this option, underride disables it
again. Also, the run command sources a script at the current level, so that you can
quickly get rid of the loaded definitions again if you invoke save beforehand.

7.4 Debugging
When running interactively, the interpreter also offers a symbolic debugging facility. To
make this work, you have to invoke the interpreter with the -g option:

$ pure -g

If you already have the interpreter running, you can also just type run -g at the
prompt to restart it in debugging mode. In any case, this will make your program run
much slower, so this option should only be used if you actually need the debugger.

One use of the debugger is “post mortem” debugging. If the most recent evaluation
ended with an unhandled exception, you can use the bt command to obtain a backtrace
of the call chain which caused the exception. For instance:

> [1,2]!3;
<stdin>, line 2: unhandled exception ’out_of_bounds’ while evaluating
’[1,2]!3’
> bt

[1] (!): (x:xs)!n::int = xs!(n-1) if n>0;
n = 3; x = 1; xs = [2]

[2] (!): (x:xs)!n::int = xs!(n-1) if n>0;
n = 2; x = 2; xs = []

[3] (!): []!n::int = throw out_of_bounds;
n = 1

>> [4] throw: extern void pure_throw(expr*) = throw;
x1 = out_of_bounds

The debugger can also be used interactively. To these ends you just set breakpoints
on the functions you want to debug, using the break command. For instance, here is a
sample session where we single-step through an evaluation of the factorial:

> fact n::int = if n>0 then n*fact (n-1) else 1;
> break fact
> fact 1;

** [1] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 1

(Type ’h’ for help.)
:

** [2] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 0
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:
++ [2] fact: fact n::int = if n>0 then n*fact (n-1) else 1;

n = 0
--> 1

** [2] (*): x::int*y::int = x*y;
x = 1; y = 1

:
++ [2] (*): x::int*y::int = x*y;

x = 1; y = 1
--> 1

++ [1] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 1
--> 1

1

Lines beginning with ** indicate that the evaluation was interrupted to show the
rule which is currently being considered, along with the current depth of the call stack,
the invoked function and the values of parameters and other local variables in the cur-
rent lexical environment. The prefix ++ denotes reductions which were actually per-
formed during the evaluation and the results that were returned by the function call
(printed as ‘--> x’ where x is the return value).

At the debugger prompt ‘:’, you can just keep on hitting the carriage return key to
walk through the evaluation step by step, as shown above. The debugger also provides
various other commands, e.g., to print and navigate the call stack, step over the current
call, or continue the evaluation unattended until you hit another breakpoint. Type the h
command at the debugger prompt to get a list of the supported commands.

A third use of the debugger is to trace function calls. For that the interpreter provides
the trace command which works similarly to break, but sets so-called “tracepoints”
which only print rule invocations and reductions instead of actually interrupting the
evaluation. For instance, assuming the same example as above, let’s first remove the
breakpoint on fact (using the del command) and then set it as a tracepoint instead:

> del fact
> trace fact
> fact 1;

** [1] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 1

** [2] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 0

++ [2] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 0
--> 1

** [2] (*): x::int*y::int = x*y;
x = 1; y = 1
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++ [2] (*): x::int*y::int = x*y;
x = 1; y = 1
--> 1

++ [1] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 1
--> 1

1

The trace command has a few options which allow you to control the amount of
information printed; please see the Pure manual for details. The break and trace com-
mands can also be used in concert if you want to debug some functions while only
tracing others. Note that these are interpreter commands; to enter them at the debugger
prompt, you’ll have to escape them with the debugger’s ‘!’ command.

The debugger can also be triggered programmatically. To these ends, just place a
call to the built-in __break__ or __trace__ function near the point in your code where
you’d like to start debugging or tracing. This gives you much finer control over the
precise location and the conditions under which the debugger should be invoked.

7.5 User-Defined Commands
The interpreter lets you define your own commands for interactive usage. Interpreter
commands are implemented as string functions exported by the special __cmd__ name-
space. For instance, here’s how you can define a command which just echoes its argu-
ments:

> namespace __cmd__;
> echo s = s;
> echo Hello, world!
Hello, world!

Note that the command function receives the rest of the command line as a string. If
it returns a string result, that string is printed by the interpreter. The command function
may also throw an exception containing a string value, in which case an error message
is printed instead.

You can put your command definitions into one of the interpreter’s startup files (see
below) so that they are always loaded when the interpreter is run in interactive mode.
See the Pure manual for some useful examples.

7.6 Interactive Startup
When running in interactive mode, the interpreter automatically sources the following
script files if they exist, in the given order: ~/.purerc, ./.purerc, ./.pure. The .pure
file is written by the dump command and thus is normally used to save and restore defi-
nitions in an interactive session. The other two files can be used by the programmer to
provide any additional definitions for interactive usage.
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8 Examples
Here are a few code snippets with brief descriptions so that you get an idea how Pure
programs look like. More detailed explanations of these examples can be found in the
Pure manual.

8.1 Hello, World
This is an utterly boring example, but it’s customarily used to explain the necessary
incantations to get programs to run in different language environments. So, without
any further ado:

using system;
puts "Hello, world!";

Of course you might just enter these lines at the prompt of the interpreter. But for
the fun of it, let’s put them into a script file hello.pure, say. You can run that script
with the interpreter as follows:

$ pure hello.pure
Hello, world!

Other options of the interpreter program are explained in Section 7. In particular,
you can compile the program to a native executable as follows:

$ pure -c hello.pure -o hello
Hello, world!
$ ./hello
Hello, world!

Note that Pure’s batch compiler has some unusual properties. In particular, it actu-
ally runs the script while compiling it. This enables some powerful programming tech-
niques such as partially evaluating the program at compile time; please see the Pure
manual for details.

8.2 Fibonacci Numbers
The naive definition:

fib n = if n<=1 then n else fib (n-2) + fib (n-1);

This works only for small values of n, but there’s a much better definition which uses
the accumulating parameters technique. This cuts down the running time from exponen-
tial to linear, and makes the function tail-recursive so that it can be executed in constant
stack space:
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fib n = loop n 0 1 with
loop n a b = loop (n-1) b (a+b) if n>0;

= a otherwise;
end;

Example:

> map fib (0..20);
[0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765]

Note that if you want to compute some really huge Fibonacci numbers, you’ll have
to do the computation with bigints in order to prevent wrap-around:

fib n = loop n 0L 1L with
loop n a b = loop (n-1) b (a+b) if n>0;

= a otherwise;
end;

Example (the result has 208988 digits):

> fib 1000000;
1953282128707757731632014947596256332443... // lots of digits follow

There’s also a variation of the same algorithm which computes the stream (lazy list)
of all Fibonnaci numbers (cf. Section 3.10):

> fibs = fibs 0L 1L with fibs a b = a : fibs b (a+b) & end;
> fibs; fibs!!(0..14);
0L:#<thunk 0x7f6be902d3d8>
[0L,1L,1L,2L,3L,5L,8L,13L,21L,34L,55L,89L,144L,233L,377L]
> fibs!1000000;
1953282128707757731632014947596256332443... // lots of digits follow

8.3 Numeric Root Finder
Here is a basic implementation of the Newton-Raphson algorithm in Pure. Note that
the solve function is to be invoked with the target function as the first and the initial
guess as the (implicit) second argument.

let dx = 1e-8; // delta value for the approximation of the derivative
let dy = 1e-12; // delta value for testing convergence
let nmax = 20; // maximum number of iterations
solve f = loop nmax (improve f) with

loop n f x = x if n <= 0;
= if abs (x-y) < dy then y else loop (n-1) f y when y = f x end;

improve f x = x - f x / derive f x;
derive f x = (f (x+dx) - f x) / dx;

end;
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Examples:

> sqrt x = solve (\t -> t*t-x) x;
> sqrt 2; sqrt 5;
1.4142135623731
2.23606797749979
> cubrt x = solve (\t -> t^3-x) x;
> cubrt 8;
2.0

8.4 Gaussian Elimination
This is a numeric algorithm to bring a matrix into “row echelon” form, which can be
used to solve a system of linear equations:

gauss_elimination x::matrix = p,x
when n,m = dim x; p,_,x = foldl step (0..n-1,0,x) (0..m-1) end;

// One pivoting and elimination step in column j of the matrix:
step (p,i,x) j
= if max_x==0 then p,i,x

else
// updated row permutation and index:
transp i max_i p, i+1,
{// the top rows of the matrix remain unchanged:
x!!(0..i-1,0..m-1);
// the pivot row, divided by the pivot element:
{x!(i,l)/x!(i,j) | l=0..m-1};
// subtract suitable multiples of the pivot row:
{x!(k,l)-x!(k,j)*x!(i,l)/x!(i,j) | k=i+1..n-1; l=0..m-1}}

when
n,m = dim x; max_i, max_x = pivot i (col x j);
x = if max_x>0 then swap x i max_i else x;

end with
pivot i x = foldl max (0,0) [j,abs (x!j)|j=i..#x-1];
max (i,x) (j,y) = if x<y then j,y else i,x;

end;

// Helper functions:
swap x i j = x!!(transp i j (0..n-1),0..m-1) when n,m = dim x end;
transp i j p = [p!tr k | k=0..#p-1]
with tr k = if k==i then j else if k==j then i else k end;
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It’s also convenient to define an Octave-like print representation of matrices here:

using system;
__show__ x::matrix
= strcat [printd j (x!(i,j))|i=0..n-1; j=0..m-1] + "\n"
with printd 0 = sprintf "\n%10.5f"; printd _ = sprintf "%10.5f" end
when n,m = dim x end if dmatrixp x;

Example:

> let x = dmatrix {2,1,-1,8; -3,-1,2,-11; -2,1,2,-3};
> x; gauss_elimination x;

2.00000 1.00000 -1.00000 8.00000
-3.00000 -1.00000 2.00000 -11.00000
-2.00000 1.00000 2.00000 -3.00000

[1,2,0],
1.00000 0.33333 -0.66667 3.66667
0.00000 1.00000 0.40000 2.60000
0.00000 0.00000 1.00000 -1.00000

8.5 Rot13
While Pure encodes strings in a C-compatible way internally, most list operations in the
Pure prelude carry over to strings, so that they can be used pretty much like they were
lists of (UTF-8) characters. Character arithmetic works as well. For instance, here’s the
rot13 encoding in Pure:

rot13 x::string = string (map rot13 x) with
rot13 c = c+13 if "a" <= lower c && lower c <= "m";

= c-13 if "n" <= lower c && lower c <= "z";
= c otherwise;

lower c = "a"+(c-"A") if "A"<=c && c<="Z";
= c otherwise;

end;

Example:

> rot13 "The quick brown fox";
"Gur dhvpx oebja sbk"
> rot13 ans;
"The quick brown fox"

8.6 The Same-Fringe Problem
This is one of the classical problems in functional programming which has a straight-
forward recursive solution, but needs some thought if we want to solve it in an efficient
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way. Consider a (rooted, directed) tree consisting of branches and leaves. To keep things
simple, we may represent these structures as nested lists, e.g.:

let t1 = [[a,b],c,[[d]],e,[f,[[g,h]]]];
let t2 = [a,b,c,[[d],[],e],[f,[g,[h]]]];
let t3 = [[a,b],d,[[c]],e,[f,[[g,h]]]];

The fringe of such a tree is the list of its leaves in left-to-right order:

fringe t = if listp t then catmap fringe t else [t];

For instance:

> fringe t1; fringe t2; fringe t3;
[a,b,c,d,e,f,g,h]
[a,b,c,d,e,f,g,h]
[a,b,d,c,e,f,g,h]

The same-fringe problem is to decide, for two given trees, whether they have the same
fringe. This can be solved without actually constructing the fringes using a generaliza-
tion of the accumulating parameters technique called continuation passing. The follow-
ing algorithm is a slightly modified transliteration of a Lisp program given in [2]. The
continuations can be found, in particular, in the g parameter of genfringe; they provide
a kind of callback function which gets invoked to process the rest of the tree after fin-
ishing the current subtree. The entire algorithm is tail-recursive, so it runs in constant
stack space.

samefringe t1 t2 =
samefringe (\c -> genfringe t1 c done) (\c -> genfringe t2 c done) with
done c = c [] done;
samefringe g1 g2 =
g1 (\x1 g1 -> g2 (\x2 g2 -> x1===x2 && (x1===[] || samefringe g1 g2)));

genfringe [] c g = g c;
genfringe (x:t) c g = genfringe x c (\c -> genfringe t c g);
genfringe x c g = c x g;

end;

Example:

> samefringe t1 t2, samefringe t2 t3;
1,0

Henry Baker, who invented this technique, said himself that this style of program-
ming is not “particularly perspicuous”. It may be useful at times, but it’s often much
easier to solve these kinds of problems in an efficient way using lazy evaluation. For
instance, here’s a much simpler solution using streams (lazy lists):

> lazyfringe t = if listp t then catmap lazyfringe (stream t) else [t];
> lazyfringe t1 === lazyfringe t2, lazyfringe t2 === lazyfringe t3;
1,0
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Note that our lazyfringe function differs from fringe only in that it converts the
input tree t into a stream before handing it over to catmap. A simple syntactic equality
check then suffices to decide whether the two trees have the same fringes. Using lazy
evaluation makes sure that the fringes are only constructed as far as needed, giving a
similar time and space efficiency as Baker’s (admittedly much more ingenious) solution.

8.7 Prime Sieve
This is a version of Erathosthenes’ prime sieve using list comprehensions. Please note
that this algorithm is rather slow and thus unsuitable for generating large prime num-
bers. It also isn’t tail-recursive and will thus run out of stack space if the primes get
large enough. There are much better ways to implement this sieve, but they’re also
more complicated. This algorithm works ok for smaller primes, though, and is easy to
understand:

primes n = sieve (2..n) with
sieve [] = [];
sieve (p:qs) = p : sieve [q | q = qs; q mod p];

end;

Example:

> primes 100;
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97]

Using streams (cf. Section 3.10), we can also compute all primes as follows:

all_primes = sieve (2..inf) with
sieve (p:qs) = p : sieve [q | q = qs; q mod p] &;

end;

Example (hit Ctrl-C when you get bored):

> using system;
> do (printf "%d\n") all_primes;
2
3
5
...

8.8 8 Queens
This is an n-queens algorithm which uses a list comprehension to organize the back-
tracking search.
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queens n = search n 1 [] with
search n i p = [reverse p] if i>n;

= cat [search n (i+1) ((i,j):p) | j = 1..n; safe (i,j) p];
safe (i,j) p = ~any (check (i,j)) p;
check (i1,j1) (i2,j2)

= i1==i2 || j1==j2 || i1+j1==i2+j2 || i1-j1==i2-j2;
end;

The board positions of the queens are encoded as lists of row-column pairs; a solu-
tion places all n queens on the board so that no two queens hold each other in check.
(Note that for efficiency, the position lists are actually constructed in right-to-left order
here, hence the call to reverse in the first equation for search which brings them into
the desired left-to-right order.) E.g., let’s compute the solutions for an 8× 8 board:

> #queens 8; // number of solutions
92
> using system;
> do (puts.str) (queens 8);
[(1,1),(2,5),(3,8),(4,6),(5,3),(6,7),(7,2),(8,4)]
[(1,1),(2,6),(3,8),(4,3),(5,7),(6,4),(7,2),(8,5)]
...

Here’s a variation of the same algorithm which only returns the first solution:

queens n = catch reverse (search n 1 []) with
search n i p = throw p if i>n;

= void [search n (i+1) ((i,j):p) | j = 1..n; safe (i,j) p];
safe (i,j) p = ~any (check (i,j)) p;
check (i1,j1) (i2,j2)

= i1==i2 || j1==j2 || i1+j1==i2+j2 || i1-j1==i2-j2;
end;

This illustrates the use of catch and throw (cf. Section 3.10) to implement non-local
value returns. As soon as the recursive search routine finds a solution, it gets thrown
as an exception which is caught in the main queens routine. Another sublety worth
noting is the use of void in the second equation of search, which effectively turns the
list comprehension into a simple loop which suppresses the normal list result and just
returns () instead. Example:

> queens 8;
[(1,1),(2,5),(3,8),(4,6),(5,3),(6,7),(7,2),(8,4)]

8.9 AVL Trees
AVL trees are balanced search trees useful for sorting and searching. This example isn’t
in the manual, but it’s included in the Pure distribution; the implementation follows [3].
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nonfix nil;
type avltree nil | avltree (bin _ _ _ _);
avltreep = typep avltree;

avltree xs = foldl insert nil xs;

null nil = 1;
null (bin _ _ _ _) = 0;

#nil = 0;
#(bin h x t1 t2) = #t1+#t2+1;

members nil = [];
members (bin h x t1 t2) = members t1 + (x:members t2);

member nil y = 0;
member (bin h x t1 t2) y

= member t1 y if x>y;
= member t2 y if x<y;
= 1;

insert nil y = bin 1 y nil nil;
insert (bin h x t1 t2) y

= rebal (mknode x (insert t1 y) t2) if x>y;
= rebal (mknode x t1 (insert t2 y));

delete nil y = nil;
delete (bin h x t1 t2) y

= rebal (mknode x (delete t1 y) t2) if x>y;
= rebal (mknode x t1 (delete t2 y)) if x<y;
= join t1 t2;

/* Implement the usual set operations on AVL trees. */

t1 + t2 = foldl insert t1 (members t2) if avltreep t1;
t1 - t2 = foldl delete t1 (members t2) if avltreep t1;
t1 * t2 = t1-(t1-t2) if avltreep t1;

t1 <= t2 = all (member t2) (members t1) if avltreep t1;
t1 >= t2 = all (member t1) (members t2) if avltreep t1;

t1 < t2 = t1<=t2 && ~t2<=t1 if avltreep t1;
t1 > t2 = t1>=t2 && ~t2>=t1 if avltreep t1;
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t1 == t2 = t1<=t2 && t2<=t1 if avltreep t1;
t1 ~= t2 = ~t1==t2 if avltreep t1;

/* Helper functions. */

join nil t2 = t2;
join t1@(bin _ _ _ _) t2

= rebal (mknode (last t1) (init t1) t2);

init (bin h x t1 nil) = t1;
init (bin h x t1 t2) = rebal (mknode x t1 (init t2));

last (bin h x t1 nil) = x;
last (bin h x t1 t2) = last t2;

/* mknode constructs an AVL tree node, computing the height value. */

mknode x t1 t2 = bin (max (height t1) (height t2) + 1) x t1 t2;

/* height and slope compute the height and slope (difference between heights
of the left and the right subtree), respectively. */

height nil = 0;
height (bin h x t1 t2) = h;

slope nil = 0;
slope (bin h x t1 t2) = height t1 - height t2;

/* rebal rebalances after single insertions and deletions. */

rebal t = shl t if slope t == -2;
= shr t if slope t == 2;
= t;

/* Rotation operations. */

rol (bin h x1 t1 (bin h2 x2 t2 t3))
= mknode x2 (mknode x1 t1 t2) t3;

ror (bin h1 x1 (bin h2 x2 t1 t2) t3)
= mknode x2 t1 (mknode x1 t2 t3);
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shl (bin h x t1 t2) = rol (mknode x t1 (ror t2)) if slope t2 == 1;
= rol (bin h x t1 t2);

shr (bin h x t1 t2) = ror (mknode x t1 (ror t2)) if slope t2 == -1;
= ror (bin h x t1 t2);

Example:

> let t1 = avltree [17,5,26,5]; let t2 = avltree [8,17];
> members (t1+t2); members (t1-t2); t1-t2;
[5,5,8,17,17,26]
[5,5,26]
bin 2 5 (bin 1 5 nil nil) (bin 1 26 nil nil)

8.10 Unit Conversions
Converting units is another classical problem in scientific and engineering applications.
Pure’s symbolic evaluation capabilities discussed in Section 4.3 let us solve this problem
in an interesting way. Note that we also employ the Newton-Raphson solver from above
for converting between standard (SI) and arbitrary units. This makes the code rather
generic, so that other kinds of units can be added quite easily.

// sample unit symbols
nonfix
miles yards feet inches kilometers meters centimeters millimeters // length
acres // area
gallons liters // volume
kilograms grams pounds ounces // mass
seconds minutes hours // time
fahrenheit celsius kelvin; // temperature

// base units
type unit miles | unit yards | unit feet | unit inches |
unit kilometers | unit meters | unit centimeters | unit millimeters |
unit acres | unit gallons | unit liters |
unit kilograms | unit grams | unit pounds | unit ounces |
unit seconds | unit minutes | unit hours |
unit fahrenheit | unit celsius | unit kelvin;

// powers of base units
type unit (u::unit^n::int);
// complement type
type nonunit x = ~typep unit x;

// Determine the base and power of a unit.
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base_of u::unit = case u of u^n = base_of u; _ = u end;
power_of u::unit = case u of u^n = n*power_of u; _ = 1 end;

// Split a dimensioned value in the normal form x*u1*...*un (see below) into
// its value (x) and unit (u1*...*un) parts.
value_of x = case x of x*u::unit = value_of x; _ = x end;
unit_of x = case x of
x*u::unit = case unit_of x of 1 = u; v = v*u end;
_ = 1;

end;

// Conversions to standard (SI) units.

standard_units = reduce with
miles = 1760*yards;
yards = 3*feet;
feet = 12*inches;
inches = 2.54*centimeters;
kilometers = 1000*meters;
centimeters = 0.01*meters;
millimeters = 0.001*meters;

acres = 43560*feet^2;

gallons = 231*inches^3;
liters = 1000*centimeters^3;

grams = 0.001*kilograms;
pounds = 453.59237*grams;
ounces = pounds/16;

minutes = 60*seconds;
hours = 60*minutes;

x*celsius = (x+273.15)*kelvin;
x*fahrenheit = (5*(x-32)/9)*celsius;

end;

/* The following rules shuffle around units until a dimensioned value ends
up in the normal form x*u1*...*un where each ui is a power of a base unit.
It also sorts the units according to their names and reduces to powers of
units where possible. Units in the denominator are expressed as negative
powers; these always come last. */
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reduce_units = reduce with
x/u::unit = x*u^(-1);

u::unit^0 = 1;
u::unit^1 = u;
(u::unit^n::int)^m::int = u^(n*m);

x*u::unit*v::unit = x*u^(power_of u+power_of v) if base_of u === base_of v;

x*(y*u::unit) = x*y*u;
x*(y/u::unit) = x*y/u;
x/(y*u::unit) = x/y/u;
x/(y/u::unit) = x/y*u;

u::unit*y::nonunit = y*u;
u::unit/y::nonunit = 1/y*u;
x*u::unit*y::nonunit = x*y*u;
x*u::unit/y::nonunit = x/y*u;
x/u::unit*y::nonunit = x*y/u;
x/u::unit/y::nonunit = x/y/u;

x*u::unit*v::unit = x*v*u if sgn (power_of u) < sgn (power_of v) ||
sgn (power_of u) == sgn (power_of v) && str (base_of u) > str (base_of v);

(x*u::unit)^n::int = x^n*u^n;

x*u::unit+y*u = (x+y)*u;
x*u::unit-y*u = (x-y)*u;
-x*u::unit = (-x)*u;

end;

/* Normalize a dimensioned value, converting it to standard units. Note that
you can just use reduce_units instead if you want to normalize the value
without converting it. */

si x = reduce_units (standard_units x);

/* Convert a dimensioned value to any (possibly non-standard) units, reduced
to normal form. Source and target units must be compatible. */

infix 1450 as;
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x as u = reduce_units (y*u) when
// Note that we invoke the solver with the precomputed normal form v of the
// target unit instead of u itself. The results shouldn’t differ but this
// will presumably speed up the computation.
v = unit_of (reduce_units (1*u));
y = solve v (value_of x);

end if unit_of y === unit_of x when
// Normalize x so that it uses standard units.
x = reduce_units (standard_units x);
// Also normalize the target unit so that we can check that source and
// target are compatible.
y = reduce_units (standard_units (1*u));

end with
solve u x = solve f x with

// The target function: To solve for a given unit u, compute its SI value
// and subtract the target value x.
f y = value_of (si (y*u)) - x;
// Newton-Raphson root finder. You might have to adjust the dx, dy and
// nmax values below to make this work.
solve f = loop nmax (improve f) with
loop n f x = x if n <= 0;

= if abs (x-y) < dy then y else loop (n-1) f y when y = f x end;
improve f x = x - f x / derive f x;
derive f x = (f (x+dx) - f x) / dx;

end when
dx = 1e-8; // delta value for the approximation of the derivative
dy = 1e-12; // delta value for testing convergence
nmax = 50; // maximum number of iterations

end;
end;

end;

Examples:

> si (1*feet^3/minutes+1*gallons/seconds);
0.0042573592272*meters^3*seconds^(-1)
> ans as liters/minutes;
255.441553632*liters*minutes^(-1)
> si ans;
0.0042573592272*meters^3*seconds^(-1)
> ans as inches^3/hours;
935280.0*inches^3*hours^(-1)
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> si (1*yards^2);
0.83612736*meters^2
> ans as inches^2;
1296.0*inches^2

> 30*celsius as fahrenheit;
86.0*fahrenheit

I think that this last example illustrates the advantages of a language based on term
rewriting really well. The symbolic manipulations needed to normalize unit values are
at the heart of the program, and there’s no need to jump through hoops to get that func-
tionality since it’s built right into the language. These symbolic evaluation capabilities,
paired with dynamic typing, make for an incredibly flexible and powerful computing
tool. Pure clearly has an edge over statically typed functional programming languages
like Haskell and ML there. On the other hand, these excel in their own areas, notably
better type safety and more efficient code through automatic type inference.
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matching substitution, 79
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show command, 49
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stream, 25
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conditional term rewriting, 81
priority term rewriting, 81

term rewriting rule, 79
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terminating, 80
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trace command, 52
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type predicate, 35
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using declaration, 38, 44
using namespace declaration, 40
UTF-8 encoding, 6, 8, 78

variable, 15, 33
local, 19
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when expression, 19
sequential execution, 20, 29
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A Pure Grammar
This is the complete extended BNF grammar of Pure. As usual, repetitions and optional
elements are denoted using curly braces and brackets, respectively. For the sake of sim-
plicity, the grammar leaves the precedence and associativity of expressions unspecified;
you can find these in Section 3.

script : {item}

item : namespace [name] [brackets] ;
| namespace name [brackets] with item {item} end;
| using namespace [namespec {, namespec}] ;
| using name {, name};
| interface qualified-identifier with {interface-item} end;
| [scope] extern prototype {, prototype};
| declarator qualified-symbol {qualified-symbol};
| let simple-rule;
| const simple-rule;
| def macro-rule;
| type type-rule;
| rule;
| expr;
| ;

interface-item : pattern
| interface qualified-identifier;

name : qualified-identifier | string

brackets : ( left-op right-op )

namespec : name [( {symbol} )]

declarator : scope | [scope] fixity

scope : public | private
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fixity : nonfix | outfix | infix precedence
| infixl precedence | infixr precedence
| prefix precedence | postfix precedence

precedence : integer | ( op )

prototype : c-type identifier ( [parameters] ) [= identifier]

parameters : parameter {, parameter} [, ...]
| ...

parameter : c-type [identifier]

c-type : identifier {*}

rule : pattern {| pattern} = expr [guard] {; = expr [guard] }

type-rule : pattern {| pattern} [= expr [guard] ]

macro-rule : pattern {| pattern} = expr

simple-rule : pattern = expr | expr

pattern : simple-expr

guard : if simple-expr
| otherwise

| guard when simple-rules end
| guard with rules end

expr : \ prim-expr {prim-expr} -> expr
| case expr of rules end
| expr when simple-rules end
| expr with rules end

75



| if expr then expr else expr
| simple-expr

simple-expr : simple-expr op simple-expr
| op simple-expr
| simple-expr op
| application

application : application prim-expr
| prim-expr

prim-expr : qualified-identifier [:: qualified-identifier | @ prim-expr]
| qualified-symbol
| number
| string
| ( op )

| ( left-op right-op )

| ( simple-expr op )

| ( op simple-expr )
| ( expr )
| left-op expr right-op
| [ exprs ]
| { exprs {; exprs} [;] }
| [ expr | simple-rules ]
| { expr | simple-rules }

exprs : expr {, expr}

rules : rule {; rule} [;]

simple-rules : simple-rule {; simple-rule} [;]

op : qualified-symbol

left-op : qualified-symbol
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right-op : qualified-symbol

qualified-symbol : [qualifier] symbol

qualified-identifier : [qualifier] identifier

qualifier : [identifier] :: {identifier ::}

number : integer | integer L | float

integer : digit {digit}
| 0 (X | x) hex-digit {hex-digit}
| 0 (B | b) bin-digit {bin-digit}
| 0 oct-digit {oct-digit}

float : digit {digit} [. digit {digit}] exponent
| {digit}. digit {digit} [exponent]

exponent : (E | e) [+ | -] digit {digit}

string : " {char} "

symbol : identifier | special

identifier : letter {letter | digit}

special : punct {punct}

digit : 0 | · · · | 9

oct-digit : 0 | · · · | 7

hex-digit : 0 | · · · | 9 | A | · · · | F | a | · · · | f
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bin-digit : 0 | 1

letter : A | · · · | Z | a | · · · | z | _ | · · ·

punct : ! | # | \$ | % | & | · · ·

char : 〈any character or escape sequence〉

The Pure language has a number of reserved keywords which cannot be used as
identifiers. These are:

case const def else end extern if
infix infixl infixr interface let namespace nonfix
of otherwise outfix postfix prefix private public
then type using when with

Note that the character repertoire available for the lexical entities letter, punct and
char depends on the basic character set that you use. The current implementation only
supports the UTF-8 encoding, so you either have to use that (most text editors should
support UTF-8 nowadays) or confine your scripts to 7 bit ASCII (which is a subset of
UTF-8). In addition to the ASCII punctuation symbols, Pure considers the following
extended Unicode characters as punctuation which can be used in special operator and
constant symbols: U+00A1 through U+00BF, U+00D7, U+00F7, and U+20D0 through U+2BFF.
This comprises the special symbols in the Latin-1 repertoire, as well as a few additional
blocks of Unicode symbols17, which should cover almost everything you’d ever want
to use in operator symbols. All other extended Unicode characters are considered as
letters.

A string character can be any character in the host character set, except newline,
double quote, the backslash and the null character (ASCII code 0, which, like in C,
is reserved as a string terminator). As usual, the backslash is used to denote special
escape sequences. In particular, the newline, double quote and backslash characters
can be denoted \n, \" and \\, respectively. Pure also provides escape sequences for all
Unicode characters, which lets you use the full Unicode set in strings even if your text
editor only supports ASCII; please see Section 2 for details.

17Just for the record, these are: Combining Diacritical Marks for Symbols, Letterlike Symbols, Number
Forms, Arrows, Mathematical Symbols, Miscellaneous Technical Symbols, Control Pictures, OCR, En-
closed Alphanumerics, Box Drawing, Blocks, Geometric Shapes, Miscellaneous Symbols, Dingbats, Mis-
cellaneous Mathematical Symbols A, Supplemental Arrows A, Supplemental Arrows B, Miscellaneous
Mathematical Symbols B, Supplemental Mathematical Operators, and Miscellaneous Symbols and Ar-
rows. Thanks are due to John Cowan who suggested this scheme which greatly simplifies Pure’s lexical
syntax.
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B Term Rewriting
In this appendix we take a brief look at the basic notions of term rewriting theory which
underly Pure’s model of computation. This material shouldn’t be necessary to work
with Pure on a practical level, but it will be interesting for programming language de-
signers and theorists and anyone else who would like to have an exact and formal (if
somewhat abstract) operational model of how Pure works as a term rewriting engine.

B.1 Preliminaries
Here are some convenient definitions. A signature is a set Σ =

⊎
n≥0 Σn of function and

variable symbols. If f ∈ Σn then we also say that f has arity n, and we assume that
XΣ ⊆ Σ0, where XΣ is the set of all variable symbols in Σ.18 The (free) term algebra over
the signature Σ is the set of terms defined recursively as:

TΣ = { f t1 · · · tn | f ∈ Σn, ti ∈ TΣ}

A term rewriting rule is an ordered pair of terms p, q ∈ TΣ, denoted p→ q. In order to
describe the meaning of these, we also need the notion of a substitution σ which is simply
a mapping from variables to terms, σ : XΣ 7→ TΣ. For convenience, we also write these
as [x1 → σ(x1), x2 → σ(x2), . . .], and we assume that σ(x) = x unless explicitly men-
tioned otherwise. Given a term p and a substitution σ = [x1 → σ(x1), x2 → σ(x2), . . .],
by σ(p) = p[x1 → σ(x1), x2 → σ(x2), . . .] we denote the term obtained by replac-
ing each variable x in p with the corresponding σ(x). For instance, if p = f x y then
p[x → g x, y → c] = f (g x) c. We also say that a term u matches a term p, or is an
instance of p, if there is a substitution σ (the so-called matching substitution) such that
σ(p) = u.

A context in a term t is a term s containing a single instance of the distinguished
variable � such that t = s[�→ u]. That is, t is just s with the subterm u at the position
indicated by �.

B.2 Basic Term Rewriting
Now the stage is set to describe an application of a term rewriting rule p → q to a
subject term t, given a context s in t. Suppose that t = s[� → u], where u = σ(p).
Then we can rewrite t to t′ = s[� → v] where v = σ(q). Such a single rewriting step
is also called a reduction, and u and v are called the redex and the reduct involved in the
reduction, respectively. For instance, by applying the rule f x y → h x to the subterm
u = f (g x) c of the subject term t = g( f (g x) c), where the context is s = g� and the
matching substitution is [x → g x, y→ c], we obtain t′ = g(h (g x)).

18Note that term rewriting theory usually employs uncurried function applications, but the curried
notation used by Pure can actually be seen as a special case of these, where all function symbols are
nullary, except for one binary symbol which is used to denote function application.
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Term rewriting rules are rarely applied in isolation, they usually come in collections
called term rewriting systems. Formally, a term rewriting system is a finite set R of term
rewriting rules. We write t →R t′ if t reduces to t′ by applying any of the rules p →
q ∈ R, and t →∗R t′ if t reduces to t′ using R in any number of single reduction steps
(including zero). That is, →∗R is the reflexive and transitive closure of the single step
reduction relation→R. Similarly, ↔∗R is the reflexive, transitive and symmetric closure
of→R.

Finally, a term t is said to be irreducible or in normal form (with respect to R) if no rule
in R applies to it, i.e., there is no term t′ such that t →R t′. If t →∗R t′ such that t′ is in
normal form, then we also call t′ a normal form of t.

B.3 Term Rewriting and Equational Logic
The basic term rewriting model sketched out above has applications in mathematical
logic. To see how, we need to consider the notion of a Σ-algebra A where each f ∈
Σn \ XΣ is associated with an n-ary function f A : An 7→ A. Each ground term t ∈ TΣ\XΣ

then corresponds to an element tA of A which is defined recursively as follows:

( f t1 · · · tn)
A = f A(tA

1 , . . . , tA
n ) ∀ f ∈ Σn \ XΣ, t1, . . . , tn ∈ TΣ\XΣ

An equation u = v of ground terms u and v is said to hold in A iff uA = vA. More
generally, if u = v is an equation of arbitrary Σ-terms u and v (possibly containing
variables), then u = v is said to hold in A iff σ(u)A = σ(v)A for each substitution σ such
that both σ(u) and σ(v) are ground terms. Also, a set of equations E holds in A iff u = v
holds in A for each u = v ∈ E, which is written A � E. We then also say that A is a
model of E. If an equation u = v holds in every model A of E, then we also say that u = v
is a logical consequence of E and write E � u = v.

Now, given a term rewriting system R, we can look at the corresponding set of
equations E = {p = q | p → q ∈ R}. As it turns out, an equation u = v holds
in every model of E (i.e., E � u = v) if and only if u ↔∗R v. This is also known as
Birkhoff’s theorem. Under certain circumstances, the rewriting system can then be used
as a procedure for deciding whether two given terms are equal in all models by just
comparing their normal forms. To make this work, the term rewriting system needs
to be terminating (there are no infinite chains u0 →R u1 →R u2 →R · · ·) and confluent
(∀u, v1, v2 : u→∗R v1, v2 ⇒ ∃w : v1, v2 →∗R w).

Unfortunately, these conditions are often not satisfied in practice. Normal forms
need not always exist and even if they do, they might not be unique. In fact the ter-
mination and confluence properties are not even decidable, because term rewriting is
a Turing-complete model of computation. Much of the deeper parts of term rewriting
theory deals with precisely these issues. But if we want to retain Turing-completeness
then we inevitably loose some of the simple and mathematically elegant equational se-
mantics of term rewriting sketched out above.
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B.4 Conditional and Priority Rewriting
Term rewriting systems can still be employed as a useful model of computation even if
they’re neither confluent nor terminating. To these ends, one usually extends the basic
term rewriting calculus so that it becomes better suited as a programming language.

One extension that turns out to be practically useful are conditional rewriting rules,
written p → q if c. The condition c, which is also called a guard in functional program-
ming parlance, usually takes the form of a conjunction of formal equations in mathe-
matical logic. But for our purposes we actually permit arbitrary terms c ∈ TΣ as guards.
We also assume two special constant symbols true, false ∈ Σ0 which denote the truth
values. Now a conditional rule p→ q if c can be applied to a redex u = σ(p) in the same
manner as before, but only if the condition is satisfied, i.e., σ(c)→∗R true. The reduction
relation→R is modified accordingly: we now have t = s[� → u] →R t′ = s[� → v] if
u = σ(p), v = σ(q) and σ(c)→∗R true.19

Conditional rules allow you to define a function in a piecewise fashion, as one com-
monly does in mathematics. As an example, here is a conditional rewriting system for
the factorial:

fact n → 1 if n ≤ 0
fact n → n× fact (n− 1) if n > 0

Another useful extension which goes well together with conditional rewriting is term
rewriting with priorities. Here we equip R with a priority order <. A rewriting rule r =
p → q or r = p → q if c may then only be applied to a given redex u if there’s
no other rule r′ < r in R which can be applied to the same redex. Priorities orders
may be total (like the textual order where the rewriting rules are considered in the order
in which they are written in the program) or partial (like the so-called specificity order
where r < r′ if the left-hand side of r is an instance of the left-hand side of r′). Pure
employs the textual order which is often considered more intuitive and is also used in
mainstream functional languages such as ML and Haskell. (The specificity order also
has its advantages, however, and has actually been used with great success in languages
such as Aardappel [21] and Hope [4].)

Like conditional rules, rewriting with priorities makes it possible to write some def-
initions which aren’t easily formulated in the basic term rewriting calculus, such as the
following definition of the factorial:

fact 0 → 1
fact n → n× fact (n− 1)

Taken as an ordinary rewriting system, this system is non-terminating (it “loops”
on the second rule), but it becomes usable as a program to compute the factorial of
nonnegative numbers if we assume that the first rule takes priority over the second one.

19Pure actually requires that σ(c) →∗R c′ ∈ {true, false}, otherwise the program is considered in error
and an exception will be raised. Also note that Pure doesn’t have a separate type for the truth values, so
they are represented as machine integers, where 0 denotes false and any nonzero value denotes true.
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Conditional rules are also frequently given priorities to allow for more succint def-
initions. The basic idea is that if the rules are always tried in the indicated order then
each successive rule may assume that the negation of all previous guards holds. For
instance, consider the following definition of the Ackerman function:

ack x y → 1 if x ≤ 0
ack x y → ack (x− 1) 1 if y ≤ 0
ack x y → ack (x− 1) (ack x (y− 1))

These rules only work as intended if they are tried exactly in the given order, because
the second and third rules operate under the assumptions that x > 0 and x, y > 0,
respectively; if the rules are considered in any other order then the resulting system
doesn’t terminate.

It goes without saying that, although the basic rewriting machinery still works the
same, conditional and priority rewriting offer an amount of control over the rewriting
process which makes this style notably different from the more declarative style of the
basic term rewriting calculus with its purely equational semantics. But it is often con-
venient to write definitions this way and so most functional programming languages
including Pure offer these features.

B.5 Reduction Strategy
Conditional and priority rewriting give the programmer better control over which rules
can be applied on a given redex. But there is still a lot of non-determinism in the choice
of redices in the rewriting process which makes these systems hard to use as a pro-
gramming language. Therefore one usually imposes a suitable reduction or evaluation
strategy which specifies the order in which redices are rewritten. When combined with
a total rule priority order, this resolves all ambiguities in the rewriting process so that it
becomes completely deterministic.

Common reduction strategies are the leftmost-innermost and leftmost-outermost
strategies. Leftmost-innermost means that the leftmost redex which doesn’t contain any
other redex gets reduced first. It corresponds to “call-by-value” and hence is typically
used in languages with eager evaluation. This strategy also lends itself to an efficient
implementation where function applications are evaluated recursively by first evaluat-
ing the arguments of the function before the function is applied to its arguments.

The leftmost-outermost strategy always chooses the leftmost redex which isn’t con-
tained in any other redex. It corresponds to “call-by-name” and is used in languages
based on lazy evaluation. This strategy is generally harder to implement in an efficient
way, but is known to be optimal for rewriting systems based on the combinatorial cal-
culus, in the sense that it never rewrites a redex unless it is really needed to determine
the normal form of the target term.
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B.6 Term Rewriting in Pure
Let us finally discuss how these notions apply to the Pure programming language. First,
note that neither the symbol alphabet Σ nor the rewriting system R are static entities in
Pure; they may evolve over time, as the programmer enters new rewriting rules interac-
tively in the interpreter or calls metaprogramming functions in the Pure runtime system.
Second, Pure also offers various convenient language constructs which aren’t really part
of term rewriting, so we have to describe how to map them to the basic calculus:

• Local function and variable definitions (Section 3.7): Local variable definitions are
equivalent to applications of local functions, using the equivalences discussed in
Section 3.7. Local function definitions can be reduced to global rewriting rules us-
ing the well-known technique of lambda lifting which eliminates all local functions
and turns local environments into explicit function arguments [12].20

• Global variable and constant definitions (Sections 4.4 and 4.5): In the term rewrit-
ing model, these can be considered as rules of the form c → t with c ∈ Σ0 \ XΣ
which may be replaced with new rules when a new let binding becomes active.

• Type definitions (Section 4.6): Pure’s types are term sets specified as unary predi-
cates on terms, which in effect are global functions defined through ordinary term
rewriting rules. Types may then be used as “tags” like x::int on the left-hand side
of rewriting rules to restrict the types of subterms matched by the variables of a
rule. In conditional rewriting, these type tags may be represented as additional
conditions c x on a rule, where c denotes the type predicate and x is the tagged
variable.21

• Macro definitions (Section 4.7): These are just ordinary rewriting rules without
conditions. What’s special about the macro rules is that they are applied in a sep-
arate preprocessing stage at compile time, in order to rewrite plain terms and the
right-hand sides of other (function and type) rewriting rules before any code is
generated.22

The above comprises what may be called Pure’s purely functional core, which can thus
be described completely using the notions of conditional term rewriting with priorities.

20We should mention there that the Pure compiler uses an efficient lambda lifting algorithm which
keeps the number of hidden arguments as small as possible, and also passes these extra parameters in an
efficient way in order to reduce the runtime overhead needed to implement this feature.

21That’s actually how Pure implements them in the general case. However, the built-in types like
int and double are actually handled in a more efficient way by inlining the type checks in the pattern
matching code.

22Since macro rules need to be applied to compile time expressions, the current implementation of the
compiler includes a separate term rewriting interpreter for this purpose. This isn’t as fast as native code,
of course, but it’s still reasonably efficient, given that the size of the involved terms and the amount of
rewriting that needs to be performed in macro substitution is quite limited in practice.

83



B.7 The Evaluation Algorithm
Pure’s basic evaluation strategy is leftmost-innermost (call-by-value). The terms which
are potentially reducible are all of one of the following forms; all other kinds of terms,
such as numbers, strings etc. are always irreducible in Pure.

• t ∈ Σ0 is either a global variable or constant, or a parameterless function. This is
the base case where t is evaluated in a direct fashion.

• t = u v is a curried application, u, v ∈ TΣ. In this case, u and v are evaluated
recursively, in that order, yielding the normal forms ū and v̄, before the application
ū v̄ itself is evaluated.

It is easy to see that this recursive procedure evaluates leftmost-innermost redices
first. There are exceptions from this evaluation order in Pure, however. If t = u v is
a special form (cf. Section 3.10), or a partial application of a special form, then v might
be left unevaluated, i.e., it is treated like a normal form. The special form itself then
takes care of evaluating the parameter as needed. (In Pure this is strictly a compile-time
feature, i.e., the head symbol of t must be recognizable as a special form at compile time
to make this happen. Otherwise, the standard call-by-value strategy is used.)

In either case we are now left with a term t whose subterms have already been eval-
uated recursively as needed, and we need to describe how t itself is to be evaluated.
To these ends, we check whether t is reducible using any of the rewriting rules of the
program. This is done using the following algorithm:

1. Match the subject term t against the left-hand sides p of rules p → q or p → q if c
in R. If more than one rule matches, they are tried in the order in which they are
listed in the program (i.e., using the textual rule order). If no rule matches then t
is already in normal form and we’re done.

2. Otherwise we obtain a matching substitution σ such that σ(p) = t. (This matching
substitution is minimal in the sense that σ(x) = x unless x actually occurs in p,
which also implies that σ is determined uniquely by p and t.)

3. For conditional rules p→ q if c, the guard σ(c) is evaluated recursively using the
matching substitution determined in step 2. If the result is false (zero), try the next
rule (go back to step 1). If the result is true (a nonzero integer), proceed with step
4. Otherwise the program is in error and an exception is raised.

4. Recursively evaluate the right-hand side σ(q) using the matching substitution de-
termined in step 2.

These steps are actually interleaved with term construction so that intermediate re-
sults don’t have to be constructed explicitly unless they are normal form terms. More-
over, step 1 also recursively evaluates “thunked” subterms (cf. Section 3.10) if the cor-
responding part of the subject term needs to be inspected during pattern matching.
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Step 1 of this algorithm might seem inefficient, but luckily the interpreter compiles
your program to fast native code before executing it. The pattern-matching code uses
a kind of optimal decision tree which only needs a single, non-backtracking left-to-
right scan of the subject term to find all matching rules in one go [9]. In most cases
the matching overhead is barely noticable, unless you discriminate over huge sets of
heavily overlapping patterns. Using these techniques and native compilation, the Pure
interpreter is able to achieve very good performance, offering execution speeds in the
same ballpark as good Lisp interpreters.

B.8 Primitives
This finally leaves us with the primitive (built-in and external) operations of the Pure
language, which also includes the handful of built-in special forms discussed in Sec-
tion 3.10. In the case of operations like arithmetic which work in a purely functional
way, these could in principle be specified using appropriate rewriting systems. How-
ever, many primitives (including some built-ins of the Pure language, most notably
exceptions) involve observable side effects and thus fall outside the rewriting model
of computation. For our purposes it’s most convenient to just consider all primitive
functions as “oracles” which reduce to the corresponding function result in a single
“spontaneous” rewriting step such as 3 + 4→ 7.

To obtain a complete formal semantics, one might specify the actual behaviour of the
primitives by some other means such as denotational semantics. While this is theoreti-
cally possible, it is a monumental task and in any case beyond the scope of this manual,
considering that Pure allows you to call any C function.

In practice, the Pure compiler inlines calls to some built-in operations, including
arithmetic (if the argument types are known) and the built-in special forms, as native
code. Other operations are implemented in the runtime or other 3rd party libraries and
are called via Pure’s C interface, which automatically handles the necessary conversions
between Pure’s term data structure and native data such as numbers and pointers. Most
primitive operations are partial functions and thus their applications are treated like
normal forms if arguments don’t match, which gives the programmer the opportunity
to specify his own rewriting rules to overload the primitive definitions (cf. Section 6).
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